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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may
be distributed outside this class only with the permission of the Instructor.

22.1 Outline

- Introduction to neural networks.
- Function approximation.

- Depth vs width in neural networks.

22.2 Neural Networks

A two-layered (one hidden and one output layer) fully connected neural network with m units in the hidden layer is
amap f : R? — R given by

fulz) = i w;h(0 z +b;),
=1

where h : R — R is the activation function, z € R< is the input vector, 0; € R is the weight vector, b; € R is the
bias/threshold, u; € R is the weight to the output, and w = (0, u,b) € R™(9+2) are the parameters.

22.2.1 Function Approximation with Neural Networks

Let .7-"7%) ={fw:w €Wy}, where W, = R™(4+2) pe the two-layered neural network function class with m
hidden units and activation function h. The next theorem shows that f € F,,, is a universal approximator.
In this section, we will see how well we can approximate functions of different kinds with neural networks.

Theorem 22.1 (Leshno, 1993). Let h : R — R be such that h ¢ R[x] (not a polynomial). Let K C R? be compact.
Then .7-',(,?)|K = {f\K 1 fe ]—'7(,?)} is dense in C(K).

To state the next result, let us introduce a set of functions

I, = {f:Rd%R:Hf:Rd%C’s.t. f(a:):/ei“’TIf(w)dw, VxeBr} ,

where B, = {z?: ||| < r} is a ball of radius 7. The function f is the Fourier transform of f up to constant
factors. We have a complexity/smoothness measure/coefficient for f € I',. (assuming there exists a unique f for f):

o(f) = / lollz| ()]s

The quantity C(f) roughly measures the “energy” of f at high frequency. Thus, f is smooth if C(f) is small. With
C(f) in hand, we state our next result:
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Figure 22.1: Barron’s theorem (Theorem 22.2) does not hold for all smooth functions but only a “slice”.

Theorem 22.2 (Barron, 1993). Let h : R — R be a measurable bounded function such that lim,_, o, h(z) =0
and lim,_,oc h(z) = 1. Let f € T, such that C(f) < oo and p € My(B,.). Then for all m > 1

. 2rC(f))?
w,}:—%m ||f — f(O) - fw”Lz(#) < %

Remark 22.3. Note that the above result is independent of d. When we approximate a smooth function with
polynomial, we get a rate of roughly (1/ m)s/ 4, where s is the number of continuous derivative of the target function
f. So the above result does not tell us that for any smooth function, the approximation error goes down with
1/m rate. But functions with finite C(f) creates a subset of smooth functions for which we get the 1/m rate (see
Fig. 22.1).

Remark 22.4. Some of the common choices of the activation function are sigmoid (h(z) = 1/(1+e~#)) and ReLU
(h(z) = max(0, z)). Note that while sigmoid satisfies the condition of Theorem 22.2, ReLU does not. However, for
ReLU, we can write s(z) = h(z) — h(z — 1) such that s satisfies the condition.

Does depth in neurals networks give some advantage? For the next result, let d = 1 and the activation function
is ReLU. We also index the neural network class with number of layers:

Frm ={f:[0,1] = R : f can be implemented by a NN with < k layers and < m hidden units} .

Theorem 22.5 (Telgarsky, 2016). Let k > 3. Then

1
sup _inf [|f —gllc = —-
FEFop2 0 9EF ok—2 > 16

Proof intuition. The proof is done by constructing a function f; which is difficult to approximate using shallow
networks. Let fo(z) = max(0, min(2z,2(1 — z))) on [0, 1]. Note that fo(x) can be implemented by a 2 layer
neural network with m = 2, 01 = 2, 5 = —4, by = 0, and b, = —0.5 so that

fo(z) = 2max(0, z) — 4max(0,z — 0.5) = wih(z) + weh(z — 0.5).

Let fi(z) = fo(frx—1(z)) with & > 1. Then fj(z) can be represented by a 2k layer neural network with 2 units in
each hidden layer. Fig. 22.2 shows f; for k = 0,1, 2.

Definition 22.6 (Crossing Number). The crossing number of a function f : [0, 1] — [0, 1] is the number of segments
in the graph on which f is above the line y = %

Combining the below two claims gives us the result.
Claim 22.7. For every measurable g : [0,1] — [0, 1] such that C(g) < 2871, || fu — gllL, > 1.

Claim 22.8. We have that
max {C(g) : g € Fim} < 2(2m)".
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Figure 22.2: fj(x) fork =0,1,2.
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