CMPUT 654 Fa 23: Theoretical Foundations of Machine Learning Fall 2023

Lecture 22: November 28

Lecturer: Csaba Szepesvári $\qquad \qquad$ *Scribes: Kushagra Chandak**Scribes: Kushagra Chandak**Scribes: Kushagra Chandak*

Note: *ET_EX* template courtesy of UC Berkeley EECS dept. [\(link](https://inst.eecs.berkeley.edu/~cs294-8/sp03/Materials/) to directory)

Disclaimer: *These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.*

22.1 Outline

- Introduction to neural networks.
- Function approximation.
- Depth vs width in neural networks.

22.2 Neural Networks

A two-layered (one hidden and one output layer) fully connected neural network with *m* units in the hidden layer is a map $f : \mathbb{R}^d \to \mathbb{R}$ given by

$$
f_w(x) = \sum_{i=1}^m u_i h(\theta_i^\top x + b_i),
$$

where $h : \mathbb{R} \to \mathbb{R}$ is the activation function, $x \in \mathbb{R}^d$ is the input vector, $\theta_i \in \mathbb{R}^d$ is the weight vector, $b_i \in \mathbb{R}$ is the bias/threshold, $u_i \in \mathbb{R}$ is the weight to the output, and $w = (\theta, u, b) \in \mathbb{R}^{m(d+2)}$ are the parameters.

22.2.1 Function Approximation with Neural Networks

Let $\mathcal{F}_m^{(h)} = \{f_w : w \in \mathcal{W}_m\}$, where $\mathcal{W}_m = \mathbb{R}^{m(d+2)}$, be the two-layered neural network function class with m hidden units and activation function *h*. The next theorem shows that $f \in \mathcal{F}_m$ is a universal approximator.

In this section, we will see how well we can approximate functions of different kinds with neural networks.

Theorem 22.1 (Leshno, 1993). Let $h : \mathbb{R} \to \mathbb{R}$ be such that $h \notin \mathbb{R}[x]$ (not a polynomial). Let $K \subset \mathbb{R}^d$ be compact. *Then* $\mathcal{F}_m^{(h)}|_K = \left\{ f|_K : f \in \mathcal{F}_m^{(h)} \right\}$ is dense in $C(K)$.

To state the next result, let us introduce a set of functions

$$
\Gamma_r = \left\{ f : \mathbb{R}^d \to R : \exists \tilde{f} : \mathbb{R}^d \to C \text{ s.t. } f(x) = \int e^{i\omega^\top x} \tilde{f}(\omega) d\omega, \forall x \in B_r \right\},\
$$

where $B_r = \{x^d : ||x||_2 \le r\}$ is a ball of radius *r*. The function \tilde{f} is the Fourier transform of f up to constant factors. We have a complexity/smoothness measure/coefficient for $f \in \Gamma_r$ (assuming there exists a unique \tilde{f} for f):

$$
C(f) = \int \|\omega\|_2 |\tilde{f}(\omega)| d\omega.
$$

The quantity $C(f)$ roughly measures the "energy" of f at high frequency. Thus, f is smooth if $C(f)$ is small. With $C(f)$ in hand, we state our next result:

Figure 22.1: Barron's theorem (Theorem [22.2\)](#page-0-0) does not hold for all smooth functions but only a "slice".

Theorem 22.2 (Barron, 1993). Let $h : \mathbb{R} \to \mathbb{R}$ be a measurable bounded function such that $\lim_{z\to -\infty} h(z) = 0$ *and* $\lim_{z\to\infty}$ $h(z) = 1$ *. Let* $f \in \Gamma_r$ *such that* $C(f) < \infty$ *and* $\mu \in M_1(B_r)$ *. Then for all* $m \ge 1$

$$
\inf_{w \in \mathcal{W}_m} \|f - f(0) - f_w\|_{L_2(\mu)} \le \frac{(2rC(f))^2}{m}.
$$

Remark 22.3. Note that the above result is independent of *d*. When we approximate a smooth function with polynomial, we get a rate of roughly (1*/m*) *s/d*, where *s* is the number of continuous derivative of the target function *f*. So the above result does not tell us that for any smooth function, the approximation error goes down with 1*/m* rate. But functions with finite *C*(*f*) creates a subset of smooth functions for which we get the 1*/m* rate (see Fig. [22.1\)](#page-1-0).

Remark 22.4. Some of the common choices of the activation function are sigmoid $(h(z) = 1/(1+e^{-z}))$ and ReLU $(h(z) = \max(0, z))$. Note that while sigmoid satisfies the condition of Theorem [22.2,](#page-0-0) ReLU does not. However, for ReLU, we can write $s(z) = h(z) - h(z - 1)$ such that *s* satisfies the condition.

Does depth in neurals networks give some advantage? For the next result, let $d = 1$ and the activation function is ReLU. We also index the neural network class with number of layers:

 $\mathcal{F}_{k,m} = \{f : [0,1] \to \mathbb{R} : f$ can be implemented by a NN with $\leq k$ layers and $\leq m$ hidden units}.

Theorem 22.5 (Telgarsky, 2016). Let $k \geq 3$. Then

$$
\sup_{f \in \mathcal{F}_{2k^2,2}} \inf_{g \in \mathcal{F}_{k,2^{k-2}}} \|f - g\|_{\infty} \ge \frac{1}{16} \, .
$$

Proof intuition. The proof is done by constructing a function f_k which is difficult to approximate using shallow networks. Let $f_0(x) = \max(0, \min(2x, 2(1-x)))$ on [0,1]. Note that $f_0(x)$ can be implemented by a 2 layer neural network with $m = 2$, $\theta_1 = 2$, $\theta_2 = -4$, $b_1 = 0$, and $b_2 = -0.5$ so that

$$
f_0(x) = 2\max(0, x) - 4\max(0, x - 0.5) = w_1h(x) + w_2h(x - 0.5).
$$

Let $f_k(x) = f_0(f_{k-1}(x))$ with $k \ge 1$. Then $f_k(x)$ can be represented by a 2*k* layer neural network with 2 units in each hidden layer. Fig. [22.2](#page-2-0) shows f_k for $k = 0, 1, 2$.

Definition 22.6 (Crossing Number). The crossing number of a function $f : [0, 1] \rightarrow [0, 1]$ is the number of segments in the graph on which *f* is above the line $y = \frac{1}{2}$.

Combining the below two claims gives us the result.

Claim 22.7. For every measurable $g : [0,1] \to [0,1]$ such that $C(g) < 2^{k-1}$, $||f_k - g||_{L_1} \ge \frac{1}{16}$.

Claim 22.8. *We have that*

$$
\max \left\{C(g) : g \in \mathcal{F}_{l,m}\right\} \leq 2(2m)^l.
$$

Figure 22.2: $f_k(x)$ for $k = 0, 1, 2$.