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22.1 Outline

- Introduction to neural networks.

- Function approximation.

- Depth vs width in neural networks.

22.2 Neural Networks

A two-layered (one hidden and one output layer) fully connected neural network with m units in the hidden layer is
a map f : Rd → R given by

fw(x) =
m∑

i=1
uih(θ⊤

i x + bi) ,

where h : R → R is the activation function, x ∈ Rd is the input vector, θi ∈ Rd is the weight vector, bi ∈ R is the
bias/threshold, ui ∈ R is the weight to the output, and w = (θ, u, b) ∈ Rm(d+2) are the parameters.

22.2.1 Function Approximation with Neural Networks

Let F (h)
m = {fw : w ∈ Wm}, where Wm = Rm(d+2), be the two-layered neural network function class with m

hidden units and activation function h. The next theorem shows that f ∈ Fm is a universal approximator.
In this section, we will see how well we can approximate functions of different kinds with neural networks.

Theorem 22.1 (Leshno, 1993). Let h : R → R be such that h /∈ R[x] (not a polynomial). Let K ⊂ Rd be compact.

Then F (h)
m |K =

{
f |K : f ∈ F (h)

m

}
is dense in C(K).

To state the next result, let us introduce a set of functions

Γr =
{

f : Rd → R : ∃f̃ : Rd → C s.t. f(x) =
∫

eiω⊤xf̃(ω)dω, ∀x ∈ Br

}
,

where Br =
{

xd : ∥x∥2 ≤ r
}

is a ball of radius r. The function f̃ is the Fourier transform of f up to constant
factors. We have a complexity/smoothness measure/coefficient for f ∈ Γr (assuming there exists a unique f̃ for f ):

C(f) =
∫

∥ω∥2|f̃(ω)|dω .

The quantity C(f) roughly measures the “energy” of f at high frequency. Thus, f is smooth if C(f) is small. With
C(f) in hand, we state our next result:
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Figure 22.1: Barron’s theorem (Theorem 22.2) does not hold for all smooth functions but only a “slice”.

Theorem 22.2 (Barron, 1993). Let h : R → R be a measurable bounded function such that limz→−∞ h(z) = 0
and limz→∞ h(z) = 1. Let f ∈ Γr such that C(f) < ∞ and µ ∈ M1(Br). Then for all m ≥ 1

inf
w∈Wm

∥f − f(0) − fw∥L2(µ) ≤ (2rC(f))2

m
.

Remark 22.3. Note that the above result is independent of d. When we approximate a smooth function with
polynomial, we get a rate of roughly (1/m)s/d, where s is the number of continuous derivative of the target function
f . So the above result does not tell us that for any smooth function, the approximation error goes down with
1/m rate. But functions with finite C(f) creates a subset of smooth functions for which we get the 1/m rate (see
Fig. 22.1).

Remark 22.4. Some of the common choices of the activation function are sigmoid (h(z) = 1/(1+e−z)) and ReLU
(h(z) = max(0, z)). Note that while sigmoid satisfies the condition of Theorem 22.2, ReLU does not. However, for
ReLU, we can write s(z) = h(z) − h(z − 1) such that s satisfies the condition.

Does depth in neurals networks give some advantage? For the next result, let d = 1 and the activation function
is ReLU. We also index the neural network class with number of layers:

Fk,m = {f : [0, 1] → R : f can be implemented by a NN with ≤ k layers and ≤ m hidden units} .

Theorem 22.5 (Telgarsky, 2016). Let k ≥ 3. Then

sup
f∈F2k2,2

inf
g∈F

k,2k−2
∥f − g∥∞ ≥ 1

16 .

Proof intuition. The proof is done by constructing a function fk which is difficult to approximate using shallow
networks. Let f0(x) = max(0, min(2x, 2(1 − x))) on [0, 1]. Note that f0(x) can be implemented by a 2 layer
neural network with m = 2, θ1 = 2, θ2 = −4, b1 = 0, and b2 = −0.5 so that

f0(x) = 2 max(0, x) − 4 max(0, x − 0.5) = w1h(x) + w2h(x − 0.5) .

Let fk(x) = f0(fk−1(x)) with k ≥ 1. Then fk(x) can be represented by a 2k layer neural network with 2 units in
each hidden layer. Fig. 22.2 shows fk for k = 0, 1, 2.

Definition 22.6 (Crossing Number). The crossing number of a function f : [0, 1] → [0, 1] is the number of segments
in the graph on which f is above the line y = 1

2 .

Combining the below two claims gives us the result.

Claim 22.7. For every measurable g : [0, 1] → [0, 1] such that C(g) < 2k−1, ∥fk − g∥L1 ≥ 1
16 .

Claim 22.8. We have that
max {C(g) : g ∈ Fl,m} ≤ 2(2m)l .
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Figure 22.2: fk(x) for k = 0, 1, 2.
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