CMPUT 654 Fa 23: Theoretical Foundations of Machine Learning

Fall 2023

Lecture 21: Kernel Methods (November 23)

Lecturer: Csaba Szepesvári

Scribes: Kushagra Chandak

Note: *ET_EX* template courtesy of UC Berkeley EECS dept. (*link* to directory) **Disclaimer**: These notes have <u>not</u> been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

In the RKHS \mathcal{H} , we want to minimize the following objective function:

$$\widetilde{\widetilde{Q}} = \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^2.$$

Theorem 21.1. For every k symmetric, positive definite kernels, $\exists (\mathcal{W}, \langle \cdot, \cdot \rangle_{\mathcal{W}})$ Hilbert space and $\psi : \mathcal{X} \to \mathcal{W}$ such that $k(u, v) = \langle \psi(u), \psi(v) \rangle_{\mathcal{W}}$.

Further, the function $f^{\psi} : \mathcal{W} \to \mathcal{H}_k$ defined by $w \mapsto (x \mapsto \langle w, \psi(x) \rangle)$ is onto and preserves the norm. That is, $f^{\psi}(\mathcal{W}) = \mathcal{H}_k$ and $||w||_{\mathcal{W}}^2 = ||f^{\psi}(w)||_{\mathcal{H}_k}^2$ for all $w \in \mathcal{W}$.

We can choose $\psi(x) = k(x, \cdot)$ and $\mathcal{W} = \mathcal{H}_k$.

Definition 21.2 (Universal kernal). $k : \mathcal{X}^2 \to \mathbb{R}$, which is symmetric and positive definite, is a universal kernel if for every $f \in C(\mathcal{X})$ and for every $\varepsilon > 0$, there exists $g \in \mathcal{H}_k$ such that $||f - g||_{\infty} \le \varepsilon$.

To show universality of a kernel, we have the following theorem.

Theorem 21.3 (Stone-Weierstrass). Let $\mathcal{X} \subseteq \mathbb{R}^d$ is compact. Then $\mathbb{R}_{\mathcal{X}}[x] \subseteq C(X)$ is dense w.r.t $\|\cdot\|_{\infty}$.

Corollary 21.4. Let k be symmetric positive definite kernel. Assume $\exists \psi_i : \mathcal{X} \to \mathbb{R}$ and $c_i > 0$ such that $k(x,y) = \sum_{i=1}^{\infty} c_i \psi_i(x) \psi_i(y)$. Also assume that

$$\{x \mapsto x_1^{p_1} \dots x_d^{p_d} : p_1, \dots, p_d \ge 0\} \subseteq \psi_i : i \ge 1.$$

Then k is universal.