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In the RKHS H, we want to minimize the following objective function:
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Theorem 21.1. For every k symmetric, positive definite kernels, ∃(W, ⟨·, ·⟩W) Hilbert space and ψ : X → W such
that k(u, v) = ⟨ψ(u), ψ(v)⟩W .

Further, the function fψ : W → Hk defined by w 7→ (x 7→ ⟨w,ψ(x)⟩) is onto and preserves the norm. That is,
fψ(W) = Hk and ∥w∥2

W = ∥fψ(w)∥2
Hk

for all w ∈ W .

We can choose ψ(x) = k(x, ·) and W = Hk.

Definition 21.2 (Universal kernal). k : X 2 → R, which is symmetric and positive definite, is a universal kernel if
for every f ∈ C(X ) and for every ε > 0, there exists g ∈ Hk such that ∥f − g∥∞ ≤ ε.

To show universality of a kernel, we have the following theorem.

Theorem 21.3 (Stone-Weierstrass). Let X ⊆ Rd is compact. Then RX [x] ⊆ C(X) is dense w.r.t ∥ · ∥∞.

Corollary 21.4. Let k be symmetric positive definite kernel. Assume ∃ψi : X → R and ci > 0 such that
k(x, y) =

∑∞
i=1 ciψi(x)ψi(y). Also assume that

{x 7→ xp1
1 . . . xpd

d : p1, . . . , pd ≥ 0} ⊆ ψi : i ≥ 1 .

Then k is universal.
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