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Motivation. Suppose we have a feature map

ψ : X → Rd

which is used to make predictions
fw(x) = ⟨w,ψ(x)⟩ ,

where w ∈ Rd. Note that if d is huge then computing the prediction fw(x) is expensive (linear in d). Can we do this
efficiently? Ambitiously, can we replace Rd with some Hilbert space W? Recall that a Hilbert space is a complete
inner product space. The endowed inner product is a bilinear function ⟨·, ·⟩ : W2 → R satisfying the following
properties for any u, v, u1, u2 ∈ W .

1. (Symmetric) ⟨u, v⟩ = ⟨v, u⟩.

2. (Linear in both arguments) ⟨u1 + u2, v⟩ = ⟨u1, v⟩ + ⟨u2, v⟩ and ⟨λu, v⟩ = λ⟨u, v⟩.

3. (Positive) ⟨u, u⟩ = 0 iff u = 0

Note that the inner product induces the norm ∥u∥2 = ⟨u, u⟩. Some examples of Hilbert spaces:

1. W = Rd with the inner product of the form ⟨u, v⟩ = u⊤Qv where Q is PSD (Q ⪰ 0).

2. W = ℓ2(RN), where ℓ2(RN) ⊂ RN such that ∥u∥2 =
∑∞

i=1 u
2
i < ∞ for all u ∈ W , with the inner product∑∞

i=1 uivi.

With a Hilbert space structure, we can do computations like calculating ERM efficiently. We have input space X
and output space Y . The prediction we want to compute efficiently is fw(x) = ⟨w,ψ(x)⟩. We also have a loss
function ℓ : R × Y → R. For data (x1, y1), . . . , (xn, yn) ∈ X × Y , the regularized loss is defined as

Q(w) = 1
n

n∑
i=1

ℓ(fw(xi), yi) + λ

2 ∥w∥2 .

We introduce another map, the kernel, k : X 2 → R, using which we can write the ERM solution.

k(u, v) = ⟨ψ(u), ψ(v)⟩ .

Now imagining that the Hilbert space W is Rd, we can find the ERM solution:

0 = Q′(w) = 1
n

n∑
i=1

∂

∂p
ℓ(fw(xi), yi)ψ(xi) + λw ,
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or

w = − 1
λn

n∑
i=1

∂

∂p
ℓ(fw(xi), yi)ψ(xi) =

n∑
i=1

αiψ(xi) .

Therefore fw can be computed as

fw(x) = ⟨w,ψ(x)⟩ =
n∑

i=1
αik(xi, x) = f̃α(x), α ∈ Rn .

Note that the penalty term ∥w∥2 can be written as

∥w∥2 =
n∑

i,j=1
αiαjk(xi, xj) = α⊤Kα ,

where K is an n× n matrix composed from the kernel: K = (k(xi, xj)n
i,j=1.

We can also optimize the loss in the α (Rn) space:

Q̃(α) = 1
n

n∑
i=1

ℓ(f̃α(xi), yi) + λ

2α
⊤Kα

We can go between the α space (Rn) and the W space. Going from Rn to W is simpler, and can be done using
the map ϕ : Rn → W defined as α 7→

∑n
i=1 αiψ(xi).

Rn W

RX

ϕ

w 7→ fwα 7→ f̃α

We know that ϕ(Rn) ⊂ W . So if we can show that arg minw∈W Q(w) ⊂ ϕ(Rn) then minimizing Q(w) would
be same as minimizing Q̃(α).

Switching to the “α” representation is called the kernel trick.

Definition 20.1 (Positive definite kernel1). Let k : X 2 → R be symmetric. k is positive definite if for all n ∈ N,
x1:n ∈ X n and α ∈ Rn,

∑n
i=1

∑n
j=1 αiαjk(xi, xj) ≥ 0.

Let k be a symmetric positive definite kernel. Let H0 ⊆ RX be defined by

H0 =
{
x 7→

n∑
i=1

αik(x, xi) : n ∈ N, α ∈ Rn

}
.

Suppose we define a function on H0 (which we will claim to be an inner product)

⟨
n∑

i=1
αik(xi, ·),

n∑
j=1

βjk(xj , ·)⟩ =
n∑

i=1

n∑
j=1

αiβjk(xi, xj) .

Claim 20.2. H0 is a pre-Hilbert space (no completeness).

Theorem 20.3. For every symmetric positive definite k, ∃!(H, ⟨·, ·⟩ ⊆ RX Hilbert space such that H0 ⊆ H is dense.
For any function

∑
αik(xi, ·), βjk(xj , ·) ∈ H0, ⟨αik(xi, ·), βjk(xj , ·)⟩ =

∑
i,j αiβjk(xi, xj).

The space H is called a reproducing kernel Hilbert space (RKHS). A RKHS has the reproducing kernel property
which follows from the construction:

f(x) = ⟨f, k(x, ·)⟩ .
1Technically, positive semi-definite


