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Lecture 19 video

19.1 Outline

• Model Selection Problem

• Model Selection using Validation Data

• Model Selection using Training Data

• Bayesian Model Selection and Averaging

19.2 Model Selection Problem

We have a set of function classes Gi ∈ Rz, i ∈ N, and

g(i)
n = argming∈Gi

Png

Pg(i)
n ≤ infg∈Gi

Pg + penaltyi(n, δ) , wp 1 − δ

Pgn = miniPg(i)
n

We want to find the class such that the empirical performance is the best

gn ∈ argming∈∪iGi
Png

Note: If V C(Gi) = di, then penaltyi(n) =
√

diln( 1
δ )

n .

19.3 Model Selection using Validation Data

We have z1:n, z′
1:m ∼ P ⊗(n+m), where z1:n is the training data and z′

1:m is the validation data.

P ′
m = 1

m
Σm

i=1δz′
i

I = argmini∈NP ′
mg(i)

n +

√
ln

(
1
qi

)

Here,
√

ln
(

1
qi

)
is the “complexity” penalty. Also, Σqi ≤ 1, qi ≥ 0. A typical choice will be qi = 1

i(i+1) or

qi = 1
(i+1)2 .

We want to consider less complex classes first (Occam’s razor) like d1 ≤ d2 ≤ . . . for VC classes.
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Theorem 19.1. Let supz,z′supg∈∪iGi
g(z) − g(z′) ≤ M , then

1. wp 1 − δ,

PgI
n ≤ infi∈NP ′

mgi
n +

√
ln

(
1
qi

)
+ M

√
ln
( 1

δ

)
2m

2. wp 1 − δ,

PgI
n ≤ infi∈NPgi

n +

√
ln

(
1
qi

)
+ M

√
ln
( 2

δ

)
2m

19.4 Model Selection using Training Data

An alternative approach would be to use the training data for model selection instead of splitting.

(I, G) := argmin{Png + Ri(g, z1:n) : i ∈ N, g ∈ Gi}

Here, Ri(g, z1:n) is the data-dependent penalty.

Theorem 19.2. Σqi ≤ 1, qi ≥ 0, ∀δ ∈ (0, 1),

αPg ≤ Png + εi(g, z1:n) +
(

ln
(

c0
δ

)
λn

)β

for some α, β, λ > 0, c0 ≥ 1,

Ri(g, z1:n) ≥ εi(g, z1:n) + 2max(0,β−1)

 ln
(

c0
qi

)
λn

β

Part 1: ∀δ ∈ (0, 1) wp 1 − δ: ∀i ∈ N, g ∈ G,

αPg ≤ Png + Ri(g, z1:n) + 2max(0,β−1)

 ln
(

c0
qi

)
λn

β

Part 2: ∀δ ∈ (0, 1), ∀i ∈ N, g ∈ G,

Png + Ri(g, z1:n) ≤ E[α′Png + α′′Ri(g, z1:n)] + ε′
i(g, δ)

then wp 1 − δ,

αPG ≤ infi∈N,g∈Gi

[
α′Pg + α′′E[Ri(g, z1:n)] + ε′

(
g,

δ

2

)]
+ 2max(0,β−1)

 ln
(

c0
qi

)
λn

β
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19.4.1 Concentration of Empirical Rademacher Complexity

Theorem 19.3.

Ri(g, z1:n) ≥ 2Rn(Gi, P ) + Mi

√√√√ ln
(

1
qi

)
2n

where, Mi = supg∈Gi
supz,z′∈Zg(z) − g(z′). Then,

1. wp 1 − δ: i ∈ N, g ∈ Gi,

Pg ≤ Png + Ri(g, z1:n) + Mi

√
ln
( 1

δ

)
2n

2. wp 1 − δ,

PG ≤ infi∈N,g∈Gi
Pg + Ri(g, z1:n) + 2Mi

√
ln
( 2

δ

)
2n

Theorem 19.4. M ≥ supgsupz,z′g(z) − g(z′), then wp 1 − δ,

Rn(G, P ) ≤ R(G, z1:n) + M

√
ln
( 1

δ

)
2n

Also wp 1 − δ,

Rn(G, P ) ≥ R(G, z1:n) − M

√
ln
( 1

δ

)
2n

Here, R(G, z1:n) is the empirical Rademacher complexity.

Corollary 19.5. wp 1 − δ: ∀g ∈ G,

Pg ≤ Png + 2R(G, z1:n) + 3M

√
ln
( 2

δ

)
2n

Theorem 19.6.

Ri(z1:n) ≥ R(Gi, z1:n + 3Mi

√√√√ ln
(

2
qi

)
2n

Then,

1. wp 1 − δ: ∀i ∈ N, g ∈ Gi,

Pg ≤ Png + Ri(z1:n) + 3Mi

√
ln
( 1

δ

)
2n

2. wp 1 − δ,

PG ≤ infi∈N,g∈Gi
Pg + E[Ri(z1:n)] + 4Mi

√
ln
( 2

δ

)
2n
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19.5 Bayesian Model Selection and Averaging

Consider the Gibb’s algorithm,

g ∼ exp(−βnPng)π0(dg)

Here, g ∈ G and π0(dg) is the prior.
Take Σqi = 1,

(I, G) ∼ Piπi(dg)exp(−βnPng)

Here, πi(dg) is the prior for class Gi.
Now, we can use the Bayesian formula for Gibbs model selection and select a model randomly but in practice

model averaging often leads to superior performance.
For f ∈ F ⊆ RX ,

P̃n(df, i) = Piπi(dg)exp(−βnPnl(f))

Here, P̃n(df, i) is the posterior.
Then we can make the predictions using,

Σi

∫
f(x)P̃n(df, i)

Claim: Averaging >>> Any Model Selection
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