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Lecture 16 video

16.1 Outline

- Recap of Rademacher Complexity and “Expected Maximum Deviation”.

- Bounding the Rademacher complexity of a class and sample by some measures of the size of the function
class only.

- Introducing McDiarmid’s Inequality, a concentration inequality that generalizes Hoeffding’s,

- Applying this to Pg to see how its empirical estimate, Png, concentrates around it.

- Making the Chaining argument to arrive at a tighter bound on the Rademacher complexity of a class, which
will allows us to remove the log n factor in our uniform deviation bounds.

16.2 Recap and Notation

We have been working towards removing the log n factor from the uniform deviation bounds for VC-classes. We do
this by using Rademacher complexity and the so-called Chaining argument.

We have a space Z , and z1:n ∈ Zn n-tuple. A function class G ⊆ RZ and P ∈ M1(Z), a probability
distribution on Z . Let σ ∼ Rad(n) be a random sign vector of length n. We defined the Rademacher complexity

R(G, z1:n) = E[ sup
g∈G

1
n

n∑
i=1

σig(zi)],

which may sometimes be denoted by Rn(G, z1:n). Then we can define Rn(G, P ) through samples Z1:n ∼ P ⊗n:

Rn(G, P ) = E[R(G, Z1:n)].

We also defined the Expected Maximum Deviation,

εn(G, P ) = E[sup
g∈G

Pg − Png].

We, then, have two propositions.

Proposition 16.1. Let gn ∈ arg ming∈G Png, then Pgn ≤ infg∈G Pg + εn(G, P ).

Proposition 16.2. εn(G, P ) ≤ 2Rn(G, P ).

16-1

https://inst.eecs.berkeley.edu/~cs294-8/sp03/Materials/
https://www.youtube.com/watch?v=BeP8z_kpOH0
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16.3 Relating the size of a class to Rademacher complexity

Definition 16.3. Let z1:n ∈ Zn. Define the empirical norm of it, L2(z1:n):

∥g∥2
L2(z1:n) = 1

n

n∑
i=1

g2(zi).

We will use the shorthand ∥g∥2
n to mean the same. Notice ∥g∥2

L2(z1:n) → ∥g∥2
L2(P ) as n → ∞.

Definition 16.4. We can, then, define the size of the norm of the class G through the sup of norms as before:

∥G∥n = sup
g∈G

∥g∥n.

Proposition 16.5. Let N = |G(z1:n)|, the number of behaviours of the function class when projected through z1:n.
Then

Rn(G, z1:n) ≤ ∥G∥n

√
2 ln N

n
.

Discussion: while there is no general bound on ∥G∥n, in many applications there will be natural bounds, such as
in the case of binary functions. Otherwise extra work might be required, or this inequality might not be the most
useful one.

Proof. We’ll start from the definition.

Rn(G, z1:n) = E[sup
g∈G

1
n

n∑
i=1

σig(zi)] = E[max
g∈G̃

1
n

n∑
i=1

σig(zi)],

where we simply noticed that projecting through the samples, there are really only finitely many items we are taking
the sup over. We set G̃ ⊆ G finite with G̃(z1:n) = G(z1:n). Then |G̃| = N , too.

Next, we’ll use the log-sum-exp inequality. This states that for A ⊆ R, |A| < ∞, if we order the elements
a1 ≥ . . . ≥ an, then ∀η > 0

eηa1 ≤
n∑

j=1
eηaj .

This is trivially true as the LHS is in the positive sum on the RHS. By taking the log of both sides and rearranging
we get max A ≤ 1

η log
∑n

j=1 eηaj . Back to the main inequality:

. . . ≤ E[ 1
η

log
∑
g∈G̃

exp
(

η

n

n∑
i=1

σig(zi)
)

]

Jensen
≤ 1

η
log
∑
g∈G̃

E[exp
(

η

n

n∑
i=1

σig(zi)
)

]

= 1
η

log
∑
g∈G̃

E[
n∏

i=1
exp

( η

n
σig(zi)

)
]

Indep
= 1

η
log
∑
g∈G̃

n∏
i=1

E[exp
( η

n
σig(zi)

)
].
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Next, we use E[exp(σx)] ≤ exp(x2/2) for x ∈ R, σ ∼ Rad(1):

. . . ≤ 1
η

log
∑
g∈G̃

n∏
i=1

exp
(

η2

2n2 g2(zi)
)

≤ 1
η

log
∑
g∈G̃

exp
(

η2

2n

1
n

n∑
i=1

g2(zi)︸ ︷︷ ︸
∥g∥2

n

)

≤ 1
η

log
[
N exp

(
η2

2n

1
n

∥G∥2
n

)]
,

where in the last step we bounded each term in the sum by ∥G∥2
n. Next, we optimize η. The last line is equal to

1
η log N + 1

η
η2

2n ∥G∥2
n, so by setting these two terms to be equal, we get η =

√
2n log N

∥G∥2
n

. Then

. . . = 2∥G∥n

√
log N

2n
≤ ∥G∥n

√
2 log N

n
.

The essence of this argument is an upper bound on the expected maximum of a bunch of random variables that
concentrate at a rate of 1/

√
n. You could e.g. make the same style argument for (centered) sub-Gaussians (of the

same constant). The maximum will yield a
√

( log N) boost to the expected value. In fact, there is a lower bound
that says that you can’t do much better, so this upper bound is pretty tight. Here, the common sub-Gaussian constant
was the scale of G.

Note the connection to VC-classes: the number of behaviours, N = |G(z1:n)|, is limited for VC-classes. It
is bounded by a polynomial, nd, so logN ≤ d log n. It gets even better; we will see refined bounds based on
Haussler’s result that instead of the log n term use a log 1

ε term instead. We will then, through a careful analysis, the
chaining argument, will be able to remove the log n factor. But first, we need to work towards a high probability
oracle inequality for Pn.

16.4 High Probability Bounds

We want a high probability oracle inequality for the deviations, so far we only have one for the expected maximum
deviation in Prop 16.2, εn(G, P ) ≤ 2Rn(G, P ). We bring out a “big cannon” to help us achieve this goal:
McDiarmid’s concentration inequality. While the concentration inequalities we have seen so far were for the average
of r.v.s, McDiarmid’s inequality is a concentration inequality for any function with limited “sensitivity” to its
arguments. The key observation is that the concentration inequalities worked, because the “average function” has
limited sensitivity to any one of its inputs: if you swapped out any input for any another value, the average can only
change by 1/n at most. McDiarmid’s inequality captures this more general result.

Theorem 16.6 (McDiarmid). Let f : X n → R. Define the sensitivity to the ith input of f as

∆i = sup
x∈X n

sup
x′

i
∈X

f(x) − f(x1, . . . , xi−1, xi′ , xi+1, . . . , xn).

Then, for X ∈ P ⊗n ∈ M1(X ) and 0 < δ < 1,

(a) w.p. 1 − δ: f(X) ≤ Ef(X) +
√

1
2
∑n

i ∆2
i log 1

δ .

(b) w.p. 1 − δ: f(X) ≥ Ef(X) −
√

1
2
∑n

i ∆2
i log 1

δ .

Proof. We will not prove this here. The proof can be found in lots of place. The argument is Chernoff-like and
employs techniques from martingales. Not too different from the proof of Hoeffding’s.
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Example. If you apply this theorem to the average function, you will get Hoeffding’s Inequality.

We will now use this inequality to prove our first high probability result relating Pg with its empirical estimate Png.

Theorem 16.7. G ⊆ RZ , P ∈ M1(Z). Let

M = sup
g∈G

sup
z,z′∈Z

|g(z) − g(z′)|.

Then for 0 < δ < 1 we have w.p. 1 − δ that ∀g ∈ G:

Pg ≤ Png + εn(G, P ) + M

√
ln 1/δ

2n

≤ Png + 2Rn(G, P ) + M

√
ln 1/δ

2n
.

Proof. Denote z1:n ∈ Zn simply by z for brevity. Further, denote

f(z) = sup
g∈G

Pg − 1
n

n∑
j=1

g(zj)

 = sup
g∈G

u(g, z).

We will bound the sensitivity of f to its inputs. Towards this, for 1 ≤ i ≤ n, z′
i ∈ Z denote z′ =

(z1, . . . , zi−1, z′
i, zi+1, . . . , zn), where we swapped out the ith entry in z for z′

i. Then we can write

f(z) − f(z′) = sup
g∈G

u(g, z) − sup
g∈G

u(g, z′)

≤ sup
g∈G

[u(g, z) − u(g, z′)]

= sup
g∈G

[
− 1

n

(
g(zi) + g(z′

i)
)]

≤ M

n
,

where we used that ∀g′ ∈ G supg∈G u(g, z′) ≥ u(g′, z′), that most terms in u(g, z) − u(g, z′) cancel, and the
definition of M , respectively. Of course, we get the same bound for f(z′) − f(z), therefore ∆i ≤ M/n ∀i. Then∑n

i ∆2
i = n M2

n2 = M2

n , so by McDiarmid, w.p. 1 − δ, Z1:n ∼ P ⊗n

f(Z1:n) ≤ E[sup
g∈G

Pg − Png]︸ ︷︷ ︸
εn(G,P )

+M

√
log(1/δ)

2n
.

By writing out the definition of f(Z1:n) and rearranging, we complete the proof.

Discussion about Fast Rates. McDiarmid gave us a Hoeffding-type bound – can we get a Bernstein-type, small-
risk bound, as well? The answer is yes. The arguments rely on Talagrand’s concentration inequality, but we do not
do this here. The book works out a number of results in this setting.

16.5 Removing log n from the upper bound

Recall, in our upper bounds so far we had a
√

n ln n
d term, while the lower bound is

√
n
d . We have been working

towards an upper bound with the same rate. We are already on a promising trajectory, as the bounds we just proved
in Thm 16.7 do not have the ln n term, so as long as it does not appear in Rn we are set! Let’s work this out. First
we will bound the Rademacher complexity by covering numbers through a Chaining argument. Then, we will show
that that leads to a bound on the Rademacher complexity without the ln n term.
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Theorem 16.8. Let z1:n ∈ Z and N(s) = N(s, G, L2(z1:n)), the covering number. Then

R(G, z1:n) ≤ inf
ε>0

4ε + 12
∫ ∞

ε

√
ln N(s)

n
ds.

Note that the integral in the Theorem is actually a finite integral, as for bounded classes, beyond a certain scale
you can cover with just 1 function, so the logarithm of that will be 0.

Fast-forwarding a bit, we will then have the following corollary, which will directly lead to a high probability
upper bound with a rate matching the lower bound!

Corollary 16.9. Let G ∈ {0, 1}Z , d = VC(G), then

Rn(G, z1:n) ≤ O(
√

d/n).

This combined with Thm 16.7 will yield the bound we were looking for without the log n term.

Proof of Corollary. Haussler has a result, which we saw earlier, that upper bounded the 2-norm empirical covering
number for a VC-class like so:

ln N2(ε, G, n) ≤ 1 + ln(d + 1) + d ln 2e

ε2 .

Then, plugging this into Thm 16.8 and noting that (a) we can pick ε basically 0, and (b) for a binary class, for a
covering scale s larger than 1/2 we can cover with a single function so the metric entropy will be 0:

R(G, z1:n) ≤
∫ 1

2

0

√
ln N(s) ≤ c

√
d

for some constant c. This is because ln N(s) is linear in d by Haussler – it is an exercise to show how to integrate
out the ln 2e

ε2 term.

Proof of Thm 16.8. The idea for this argument is to consider coverings at multiple scales, from very big to small.
Before, we always had this issue of trading off the covering number for scale ε under the square root, with the ε

additive term. We always considered just one scale. Considering multiple scales, we’ll arrive at a better bound. Let
B = ∥G∥n, the empirical 2-norm. Define covering scales

ε0 = B, ε1 = B/2, ε3 = B/4, . . . , εl = 2−lB, . . . .

Let Gl be a min εl-cover of G w.r.t. ∥ · ∥n, the empirical norm. Denote Nl = |Gl| = N(εl). Further, for convenience,
set G0 := {0} (even if it is not in G).

For l ≥ 0, let gl(g) = arg ming′∈Gl
∥g′ − g∥n. Then, by the construction of the cover

∥g − gl(g)∥n ≤ εl.

Now, pick L > 0 large positive integer, corresponding to the smallest scale approximation we consider. Then we
can write

g = g − gL(g)︸ ︷︷ ︸
very good approx

+ gL(g) − gL−1(g)︸ ︷︷ ︸
trading off approx

and covering #

+ . . . + g1(g) − g0(g) + g0(g)︸ ︷︷ ︸
=0

. (16.1)

The idea is that gL(g) is a very fine approximation, so we pay a small additive ε price for it, but its corresponding
covering number would be too large. Therefore we add it back, moving to a less fine approximation. We will bound
the empirical norm of each term:

∥gl(g) − gl−1(g)∥n ≤ ∥gl(g) − g∥n + ∥gl−1(g) − g∥n ≤ εl + εl−1 ≤ εl + 2εl = 3εl.
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We also have |{gl(g)−gl−1(g) : g ∈ G}| ≤ NlNl−1. We are ready to derive the promised bound on the Rademacher
complexity! We will use the notation [f ]z to mean f evaluated at z. An explanation of each step will come after.

R(G, z1:n) = E sup
g∈G

1
n

n∑
i=1

σig(zi)

≤ E sup
g∈G

1
n

n∑
i=1

σi[g − gL(g)]zi + E sup
g∈G

1
n

n∑
i=1

σi

L∑
l=1

[gl − gl−1(g)]zi (16.2)

≤ εL + E
L∑

l=1
sup
g∈G

1
n

n∑
i=1

σi[gl − gl−1(g)]zi
(16.3)

≤ εL +
L∑

l=1
3εl

√
2 ln NlNl−1

n
(16.4)

≤ εL + 6
L∑

l=1
εl

√
ln Nl

n
(16.5)

= εL + 12
L∑

l=1

1
2εl

√
ln Nl

n
(16.6)

= εL + 12
L∑

l=1
(εl − εl−1)

√
ln N(εl)

n
(16.7)

≤ εL + 12
∫ ∞

εL/2

√
ln N(s)

n
ds. (16.8)

≤ inf
ε>0

4ε + 12
∫ ∞

ε

√
ln N(s)

n
ds. (16.9)

The steps carried out were:

• Eq 16.2: split g according to the sum in 16.1, take the sup of the first term (fine approximation) and the rest
of the terms separately.

• Eq 16.3: In the first term, each σi[g − gL(g)]zi is upper bounded by εL, hence the whole expression is. In the
second term we move the sum over L outside the sup (upper bound), and even the expectation.

• Eq 16.4: Notice that the expectation is the Rademacher complexity for a finite class, with number of elements
NlNl−1 as we saw above. The scale is 3εl, as shown above. The bound is from Prop 16.5.

• Eq 16.5: use Nl ≥ Nl−1, also adjusting constants for convenience.

• Eq 16.6: setup for the next step, where..

• Eq 16.7: we use 1
2 εl = εl − εl+1 as εl+1 = 1

2 εl by construction. Also writing N(εl) = Nl.

• Eq 16.8: note that what we have is a Riemann sum, as N(εl) is a decreasing function of εl, so we can bound
it by the corresponding integral. We are generous with the upper limit of the integral here.

• Eq 16.9: first, use ε′ = εL/2. Then note that the inequalities so far were true for any L, so we can take the
inf over the corresponding discrete set of εL. However the last line has an inf over all continuous values. The
best continuous ε is a factor of 2 off from the best discrete ε, hence the additional factor of 2 in this step.

Note, B is the upper end of the integral, otherwise it does not matter.
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