CMPUT 654 Fa 23: Theoretical Foundations of Machine Learning Fall 2023

Lecture 14: Covering Number Estimates (October 19)

Lecturer: Csaba Szepesvári *Scribes: Kushagra Chandak Scribes: Kushagra Chandak Scribes: Kushagra Chandak `*

Note: *ET_EX* template courtesy of UC Berkeley EECS dept. [\(link](https://inst.eecs.berkeley.edu/~cs294-8/sp03/Materials/) to directory)

Disclaimer: *These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.*

(Part 1). Let $\mathcal{G} \subseteq \{0,1\}^{\mathcal{Z}}$ be a VC class, that is, $\text{VC}(\mathcal{G}) = d$. Then Sauer's lemma gives us $\mathcal{N}_{\infty}(\varepsilon, \mathcal{G}, n) \leq$ $O(d \ln(n/d))$. Using Haussler's result, we can bound empirical metric entropy without $\ln(n)$ dependence but ln($1/\varepsilon$) dependence:

$$
\ln \mathcal{M}(\varepsilon, \mathcal{G}, L_1(z_{1:n}) \le 1 + \ln(d+1) + \ln \frac{2e}{\varepsilon}.
$$

We will see later how we can remove the ln *n* factor from uniform deviation bounds using generalized Haussler's result and a technique called chaining.

(Part 2). Recall that VC dimension was a combinatorial quantity, that is, it was defined for $\{0, 1\}$ -valued function classes. We next extend this notion to real-valued function classes.

Definition 14.1 (Subgraph function). Let $\mathcal{G} : \mathcal{Z} \to \mathbb{R}$. The subgraph function for $g \in \mathcal{G}$ is a map $(g): \mathcal{Z} \times \mathbb{R} \to \{0, 1\}$ given by $(z, t) \mapsto \mathbb{I}(t \leq g(z)).$

Definition 14.2 (VC-subgaph dimension). The VC-subgraph dimension (also called Pollard pseudo dimension) is defined as $VC(\mathcal{G}) = VC((\mathcal{G}).$

Proposition 14.3. Let $\mathcal{Z} = \mathbb{R}^d$ and $w \in \mathbb{R}^d$. Let $f_w : \mathcal{Z} \to \mathbb{R}$ given by $z \mapsto w^\top z$ and $\text{LIN}_d = \{f_w : w \in \mathbb{R}^d\}$. *Then* $VC(LIN_d) \leq d + 1$ *.*

It is worthwhile to remember that VC-dimension is monotone for inclusion. That is if $A \subseteq B$, then $VC(A) \le VC(B)$.

Proposition 14.4. *Let* $h : \mathbb{R} \to \mathbb{R}$ *be a monotone function. Then* $VC(h \circ \mathcal{G}) \le VC(\mathcal{G})$ *.*

Theorem 14.5. *Let* $\mathcal{G} \subseteq [0,1]^{\mathbb{Z}}$ *and* $d = \text{VC}(\mathcal{G})$ *. Then*

1. For $1 \leq p \leq \infty$

$$
\mathcal{M}(\varepsilon, \mathcal{G}, L_p(\mu)) \leq \mathcal{M}(\varepsilon, (\mathcal{G}), L_p(\mu \otimes U[0, 1])
$$

$$
\leq 1 + \ln(d+1) + \ln \frac{2e}{\varepsilon^p}.
$$

2. *For* $0 \leq \varepsilon < 1$

$$
\ln N_{\infty}(\varepsilon, \mathcal{G}, n) \le d \ln \max \left(2, \frac{en(1+\varepsilon)}{\varepsilon} \right)
$$

.

14.1 Packing and Covering for Bounded Function Classes

A function class that has a uniform deviation bound with $d \log \frac{c}{\varepsilon}$ for some *c* is sometimes called a parametric class whereas classes with $\frac{1}{\varepsilon}$ rates are called non-parametric classes.