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Let us recall the definition of a cover. For the remainder of this section, let (V, d) be a pseudometric space.

Definition 13.1 (Cover). Let G ⊆ V . G(ε) ⊆ V is an ε-cover of G if for all g ∈ G there exitst g′ ∈ G(ε) such that
d(g, g′) ≤ ε.

If G(ε) ⊆ G, then it is called the inside cover. Inside covers can be useful in the cases when functions in G have
some special properties, e.g., to use Bernstein inequality. The covering number of G at scale ε is given by

N (ε,G, d) = min {|G(ε)| : G(ε) is an ε-cover of G} .

Note that Nins(ε) ≥ N (ε) (dropping dependencies of covering numbers on G and d).

Definition 13.2 (Bracket). G(ε) =
{
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The bracketing number is given by

N[ ] = min {|G(ε)| : G(ε) is an ε-bracket} .

For covering, note that G may not be a function class but for bracketing G is usually a function class.
Covering and bracketing numbers are related via the following inequalities.

N (ε,G, Lp(P )) ≤ N[ ](2ε,G, Lp(P )) (13.1)

N[ ](ε,G, L∞(P )) ≤ N (ε/2,G, L∞(P )) .

Definition 13.3 (Packing). G(ε) ⊆ G is an ε-packing of G if for any g, g′ ∈ G(ε), d(g, g′) > ε.

The packing number of G at scale ε is defined as

M(ε,G, d) = max {G(ε) : G(ε) is an ε-packing of G} .

We have the following result stating that covering and packing numbers are almost the same with appropriate scale.

Proposition 13.4. The following holds for a set G with a pseudometric d.

N (ε) ≤ Nins(ε)
(1)
≤ M(ε)

(2)
≤ N (ε/2) ≤ Nins(ε/2) .

Proof. The inequalities N (ε) ≤ Nins(ε) and N (ε/2) ≤ Nins(ε/2) directly follow from the fact that if A ⊆ B, then
minA ≥ minB.

To prove (1), we start by picking a maximal packing G(ε) ⊆ G. Therefore, |G(ε)| = M(ε). Note that G(ε) is
also an ε-cover (not minimum). [If it was not, then there must be a g ∈ G such that for all g′ ∈ G(ε), d(g, g′) > ε,
which means g can be added to the packing G(ε) contradicting that it is maximal.] Therefore, the cardinality of the
minimum (inside) cover should be less than or equal to M(ε), or Nins(ε) ≤ M(ε).
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To prove (2), we start by picking a maximal packing G(ε) and any cover G′(ε/2). Now we show an injective
mapping ψ between G(ε) and G′(ε/2) which will imply that |G(ε)| ≤ |G′(ε/2)| proving (2).

We map g1 ∈ G(ε) to its cover element g′ ∈ G′(ε/2). That is, ψ(g1) = g′ for any g′ such that d(g1, g
′) ≤ ε/2,

since G′(ε/2) is a cover. If there are multiple g′, pick an arbitrary one. Now we show that ψ is injective, that is, for
g1, g2 ∈ G(ε) such that g1 ̸= g2, ψ(g1) ̸= ψ(g2). We start by the definition of packing:

ε < d(g1, g2) ≤ d(g1, ψ(g1)) + d(ψ(g1), g2) ≤ ε

2 + d(ψ(g1), g2) .

This gives d(ψ(g1), g2) > ε/2 ≥ d(ψ(g2), g2). If ψ(g1) = ψ(g2) then the previous inequality is always false
(d(g′, g2) > ε/2 and d(g′, g2) ≤ ε/2). Therefore ψ(g1) ̸= ψ(g2) for g1 ̸= g2 and ψ is injective.

Next we show upper and lower bounds on covering and packing numbers for a ball of radius r in k dimensions.
We will see that both packing and covering numbers are of the order of ∼ (r/ε)k using some volume arguments and
Proposition 13.4. For the pseudometric, we will just denote the norm that induces it.

Proposition 13.5. Let B(r) ball in Rk with radius r and center 0. We have the following.

1. M(ε,B(r), ∥ · ∥) ≤
(
1 + 2r

ε

)k
.

2. N (ε,B(r), ∥ · ∥) ≥
(

r
ε

)k
.

Proof. Let m be the Lebesgue measure on Rk. We have that in Rk, m(B(r)) = c · rk for some c > 0.

1. Let Z ⊆ B(r) be the maximal (countable) ε-packing of B(r). Since in ε-packing, balls for radius ε/2 are
disjoint, we have that for z, z′ ∈ Z
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Finally, we also have that the volume of a ball with radius r + ε/2 is as large as volume of the cover:

m
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Therefore,

M(ε) · c ·
(ε

2

)k

≤ c ·
(
r + ε

2

)k

finishing the proof.

2. Let Z ⊆ Rk be any (finite) ε-cover of B(r). We have B(r) ⊆
⋃

z∈Z B(z, ε), which gives

m(B(r)) ≤ |Z| ·m(B(z, ε))
=⇒ crk ≤ |Z| · c · εk

=⇒ |Z| ≥
(r
ε

)k

.

Since the above is true for any ε-cover, it is true for the minimum cover as well.
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Since N (ε) ≤ M(ε) by Proposition 13.4, we also have that N (ε,B(r), ∥ · ∥) ≤
(
1 + 2r

ε

)k
.

Next we see that the bracketing number of a Lipschitz function class is characterized by the Lipschitz constant.
Let us recall the definition of a Lipschitz function. For two metric spaces (U, du) and (V, dv), a function f : U → V

is Lipschitz if for all u, u′ ∈ U , dv(f(u), f(u′)) ≤ L · du(u, u′) for some L > 0.
Let G = {gw : gw : Z → R} be a function class parameterized by w, where w ∈ W ⊆ Rk.

Proposition 13.6. Let |gw − g′
w| ≤ γ∥w − w′∥ for all w,w′ ∈ W ⊆ B(r), where

γ : Z → [0,∞) ; γp = ∥γ∥Lp
.

Then

N[ ](2ε,G, Lp) ≤
(

1 + 2γpr

ε

)k

.


