CMPUT 654 Fa 23: Theoretical Foundations of Machine Learning Fall 2023

Lecture 13: Packing and Covering Numbers (October 17)

Lecturer: Csaba Szepesvári *Scribes: Kushagra Chandak Scribes: Kushagra Chandak Scribes: Kushagra Chandak*

Note: *ET_EX* template courtesy of UC Berkeley EECS dept. [\(link](https://inst.eecs.berkeley.edu/~cs294-8/sp03/Materials/) to directory)

Disclaimer: *These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.*

Let us recall the definition of a cover. For the remainder of this section, let (V, d) be a pseudometric space.

Definition 13.1 (Cover). Let $\mathcal{G} \subseteq V$. $G(\varepsilon) \subseteq V$ is an ε -cover of \mathcal{G} if for all $g \in \mathcal{G}$ there exitst $g' \in \mathcal{G}(\varepsilon)$ such that $d(g, g') \leq \varepsilon$.

If $\mathcal{G}(\varepsilon) \subseteq \mathcal{G}$, then it is called the **inside cover**. Inside covers can be useful in the cases when functions in \mathcal{G} have some special properties, e.g., to use Bernstein inequality. The **covering number** of G at scale ε is given by

 $\mathcal{N}(\varepsilon, \mathcal{G}, d) = \min \{ |\mathcal{G}(\varepsilon)| : \mathcal{G}(\varepsilon) \text{ is an } \varepsilon\text{-cover of } \mathcal{G} \}.$

Note that $\mathcal{N}_{ins}(\varepsilon) \geq \mathcal{N}(\varepsilon)$ (dropping dependencies of covering numbers on \mathcal{G} and *d*).

Definition 13.2 (Bracket). $G(\varepsilon) = \{(g_1^L, g_1^U), \ldots, (g_m^L, g_m^U)\}\$ is an ε -bracket of $\mathcal G$ if for all $g \in \mathcal G$ there exists $i \in [m]$ such that $g_i^L \leq g \leq g_i^U$ and $d(g_i^U, g_i^L) \leq \varepsilon$.

The bracketing number is given by

$$
\mathcal{N}_{[]} = \min \{ |\mathcal{G}(\varepsilon)| : \mathcal{G}(\varepsilon) \text{ is an } \varepsilon\text{-bracket} \} .
$$

For covering, note that G may not be a function class but for bracketing G is usually a function class.

Covering and bracketing numbers are related via the following inequalities.

$$
\mathcal{N}(\varepsilon, \mathcal{G}, L_p(P)) \le \mathcal{N}_{[]}(2\varepsilon, \mathcal{G}, L_p(P))
$$
\n
$$
\mathcal{N}_{[]}(\varepsilon, \mathcal{G}, L_\infty(P)) \le \mathcal{N}(\varepsilon/2, \mathcal{G}, L_\infty(P)).
$$
\n(13.1)

Definition 13.3 (Packing). $\mathcal{G}(\varepsilon) \subseteq \mathcal{G}$ is an ε -packing of \mathcal{G} if for any $g, g' \in \mathcal{G}(\varepsilon)$, $d(g, g') > \varepsilon$.

The packing number of $\mathcal G$ at scale ε is defined as

$$
\mathcal{M}(\varepsilon, \mathcal{G}, d) = \max \{ \mathcal{G}(\varepsilon) : \mathcal{G}(\varepsilon) \text{ is an } \varepsilon\text{-packing of } \mathcal{G} \}.
$$

We have the following result stating that covering and packing numbers are almost the same with appropriate scale.

Proposition 13.4. *The following holds for a set* G *with a pseudometric d.*

$$
\mathcal{N}(\varepsilon) \leq \mathcal{N}_{ins}(\varepsilon) \stackrel{(1)}{\leq} \mathcal{M}(\varepsilon) \stackrel{(2)}{\leq} \mathcal{N}(\varepsilon/2) \leq \mathcal{N}_{ins}(\varepsilon/2).
$$

Proof. The inequalities $\mathcal{N}(\varepsilon) \leq \mathcal{N}_{ins}(\varepsilon)$ and $\mathcal{N}(\varepsilon/2) \leq \mathcal{N}_{ins}(\varepsilon/2)$ directly follow from the fact that if $A \subseteq B$, then $\min A > \min B$.

To prove (1), we start by picking a maximal packing $\mathcal{G}(\varepsilon) \subseteq \mathcal{G}$. Therefore, $|\mathcal{G}(\varepsilon)| = \mathcal{M}(\varepsilon)$. Note that $\mathcal{G}(\varepsilon)$ is also an ε -cover (not minimum). [If it was not, then there must be a $g \in \mathcal{G}$ such that for all $g' \in \mathcal{G}(\varepsilon)$, $d(g, g') > \varepsilon$, which means *g* can be added to the packing $\mathcal{G}(\varepsilon)$ contradicting that it is maximal.] Therefore, the cardinality of the minimum (inside) cover should be less than or equal to $\mathcal{M}(\varepsilon)$, or $\mathcal{N}_{ins}(\varepsilon) \leq \mathcal{M}(\varepsilon)$.

.

To prove (2), we start by picking a maximal packing $G(\varepsilon)$ and *any* cover $G'(\varepsilon/2)$. Now we show an injective mapping ψ between $\mathcal{G}(\varepsilon)$ and $\mathcal{G}'(\varepsilon/2)$ which will imply that $|\mathcal{G}(\varepsilon)| \leq |\mathcal{G}'(\varepsilon/2)|$ proving (2).

We map $g_1 \in \mathcal{G}(\varepsilon)$ to its cover element $g' \in \mathcal{G}'(\varepsilon/2)$. That is, $\psi(g_1) = g'$ for any g' such that $d(g_1, g') \leq \varepsilon/2$, since $\mathcal{G}'(\varepsilon/2)$ is a cover. If there are multiple g', pick an arbitrary one. Now we show that ψ is injective, that is, for $g_1, g_2 \in \mathcal{G}(\varepsilon)$ such that $g_1 \neq g_2, \psi(g_1) \neq \psi(g_2)$. We start by the definition of packing:

$$
\varepsilon < d(g_1, g_2) \leq d(g_1, \psi(g_1)) + d(\psi(g_1), g_2) \leq \frac{\varepsilon}{2} + d(\psi(g_1), g_2).
$$

This gives $d(\psi(g_1), g_2) > \varepsilon/2 \geq d(\psi(g_2), g_2)$. If $\psi(g_1) = \psi(g_2)$ then the previous inequality is always false $(d(g', g_2) > \varepsilon/2$ and $d(g', g_2) \leq \varepsilon/2$). Therefore $\psi(g_1) \neq \psi(g_2)$ for $g_1 \neq g_2$ and ψ is injective.

Next we show upper and lower bounds on covering and packing numbers for a ball of radius *r* in *k* dimensions. We will see that both packing and covering numbers are of the order of ∼ (*r/ε*) *^k* using some volume arguments and Proposition [13.4.](#page-0-0) For the pseudometric, we will just denote the norm that induces it.

Proposition 13.5. Let $B(r)$ ball in \mathbb{R}^k with radius r and center 0. We have the following.

1. $\mathcal{M}(\varepsilon, B(r), \|\cdot\|) \leq (1 + \frac{2r}{\varepsilon})^k$. 2. $\mathcal{N}(\varepsilon, B(r), \|\cdot\|) \geq \left(\frac{r}{\varepsilon}\right)^k$.

Proof. Let *m* be the Lebesgue measure on R^k . We have that in \mathbb{R}^k , $m(B(r)) = c \cdot r^k$ for some $c > 0$.

1. Let $\mathcal{Z} \subseteq B(r)$ be the maximal (countable) ε -packing of $B(r)$. Since in ε -packing, balls for radius $\varepsilon/2$ are disjoint, we have that for $z, z' \in \mathcal{Z}$

$$
B\left(z,\frac{\varepsilon}{2}\right)\cap B\left(z',\frac{\varepsilon}{2}\right)=\varnothing\,,
$$

which implies

$$
m\left(\bigcup_{z\in\mathcal{Z}}B\left(z,\frac{\varepsilon}{2}\right)\right)=\sum_{z\in\mathcal{Z}}m\left(B\left(z,\frac{\varepsilon}{2}\right)\right)=\mathcal{M}(\varepsilon)\cdot c\cdot\left(\frac{\varepsilon}{2}\right)^k.
$$

Finally, we also have that the volume of a ball with radius $r + \varepsilon/2$ is as large as volume of the cover:

$$
m\left(\bigcup_{z\in\mathcal{Z}}B\left(z,\frac{\varepsilon}{2}\right)\right)\leq m\left(B\left(r+\frac{\varepsilon}{2}\right)\right)=c\cdot\left(r+\frac{\varepsilon}{2}\right)^k
$$

Therefore,

$$
\mathcal{M}(\varepsilon)\cdot c\cdot\left(\frac{\varepsilon}{2}\right)^k\leq c\cdot\left(r+\frac{\varepsilon}{2}\right)^k
$$

finishing the proof.

2. Let $\mathcal{Z} \subseteq \mathbb{R}^k$ be any (finite) ε -cover of $B(r)$. We have $B(r) \subseteq \bigcup_{z \in \mathcal{Z}} B(z, \varepsilon)$, which gives

$$
m(B(r)) \leq |\mathcal{Z}| \cdot m(B(z, \varepsilon))
$$

\n
$$
\implies cr^k \leq |\mathcal{Z}| \cdot c \cdot \varepsilon^k
$$

\n
$$
\implies |\mathcal{Z}| \geq \left(\frac{r}{\varepsilon}\right)^k.
$$

Since the above is true for any ε -cover, it is true for the minimum cover as well.

Since $\mathcal{N}(\varepsilon) \leq \mathcal{M}(\varepsilon)$ by Proposition [13.4,](#page-0-0) we also have that $\mathcal{N}(\varepsilon, B(r), \| \cdot \|) \leq (1 + \frac{2r}{\varepsilon})^k$.

Next we see that the bracketing number of a Lipschitz function class is characterized by the Lipschitz constant. Let us recall the definition of a Lipschitz function. For two metric spaces (U, d_u) and (V, d_v) , a function $f: U \to V$ is Lipschitz if for all $u, u' \in U$, $d_v(f(u), f(u')) \leq L \cdot d_u(u, u')$ for some $L > 0$.

Let $\mathcal{G} = \{g_w : g_w : \mathcal{Z} \to \mathbb{R}\}$ be a function class parameterized by w, where $w \in \mathcal{W} \subseteq \mathbb{R}^k$.

Proposition 13.6. Let $|g_w - g'_w| \leq \gamma ||w - w'||$ for all $w, w' \in \mathcal{W} \subseteq B(r)$, where

$$
\gamma : \mathcal{Z} \to [0, \infty) \quad ; \quad \gamma_p = ||\gamma||_{L_p} \, .
$$

Then

$$
\mathcal{N}_{[}](2\varepsilon, \mathcal{G}, L_p) \le \left(1 + \frac{2\gamma_p r}{\varepsilon}\right)^k.
$$