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9.1 Motivation and Overview

Consider the following example. We have X = Rd, Y = {0, 1} and our function class is F = {fw : w ∈ Rd}
where fw = I(w⊤x ≥ 0). In this example, the lower bracketing cover is hard to find. Bracketing cover works but in
order to get a better rate, we need some other tools: Lp-empirical covering number, uniform entropy (L1, L∞) and
symmetrization. Back to the example, the set of our function F is an infinity set so the covering size has to go to
infinity in order to cover Rd up to ε. However, if we take a closer look at the structure of F , the behavior of this
function class is restrictive, for example, the magnitude does not matter (we only care about the sign of the inner
product, which is only relevant to the direction of w). What’s more, note that with a dataset (Xi, Yi)n

i=1, the number
of behaviors, i.e., all possible outcomes that (Yi)n

i=1 can take, could go up to 2n. But with a function from F , the
total number of behaviors increases as nd instead of 2n (we will see that later). This structure could be taken use of
to increase the learning efficiency.

9.2 Empirical Covering Number

We start with a pseudo-meric space (X , d) where X is a set of points and d : X × X → [0,∞) is a pseudo-meric
that satisfies the following properties:

1. For all x ∈ X , d(x, x) = 0.

2. (non-negativity) For all x, y ∈ X , d(x, y) ≥ 0.

3. (symmetry) For all x, y ∈ X , d(x, y) = d(y, x).

4. (triangle inequality) For all x, y, z ∈ X , d(x, z) ≤ d(x, y) + d(y, z).

Note that it does not satisfy the property that d(x, y) = 0 only if x = y.

Definition 9.1 (ε-cover). The ε-cover of (X , d) is a finite set {xi}n
i=1 such that for all x ∈ X , there exists i ∈ [n]

satisfying d(x, xi) ≤ ε.

The empirical cover is w.r.t. the empirical metric, which we define below.

Definition 9.2 (Empirical Lp metric). Let G ⊆ RZ and z1:n ⊂ Zn. For all g ∈ G, the empirical Lp-norm
∥ · ∥Lp(z1:n) is defined to be

∥g∥Lp(z1:n) =
(

1
n

n∑
i=1

|g(zi)|p
)1/p

.

The empirical Lp-norm induces a metric d, i.e., for all g1, g2 ∈ G, the empirical Lp metric is defined to be
d(g1, g2) = ∥g1 − g2∥Lp(z1:n).
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Different from bracketing cover, the empirical covering has to be a subset of the whole set. As in bracketing
number, we define the empirical Lp covering number

Np(ε,G, z1:n) = min{n ≥ 1 : ∃g1, ..., gn that forms an ε-cover w.r.t. the empirical Lp metric}.

We further define the uniform empirical Lp covering number as N (ε,G, n) = supz1:n Np(ε,G, z1:n).
There is a proposition in real analysis about the relationship between Lp and Lq spaces which we state below.

Proposition 9.3. Let (Ω,Σ, µ) be a finite measure space and 1 ≤ p ≤ q ≤ ∞. Then ∥ · ∥Lp ≤ C∥ · ∥Lq , where
C = µ(Ω)1/p−1/q . In particular, if µ(Ω) = 1, then Lp ≤ Lq .

The measure corresponding to empirical Lp-norm is the mixture of diracs on z1, ..., zn, i.e., µ(z) = 1
n if

z ∈ {zi}n
i=1 and µ(z) = 0 otherwise. Hence we have the following corollary.

Corollary 9.4. For 1 ≤ p ≤ q ≤ ∞ and z1:n ∈ Zn, it follows that Lp(z1:n) ≤ Lq(z1:n).

9.3 Symmetrization

The symmetrization lemma that we are going to display here is counter-intuitive so let’s focus on the result itself
and we will see why we need it later. We need to first introduce some notations. Let P ∈ M1(Z) be a probability
measure and Z1:n, Z

′
1:n ∼ P be i.i.d. samples from P where Z ′

1:n are called shadow samples. As before, we define
the empirical measure on Z1:n, Z

′
1:n:

Pn = 1
n

n∑
i=1

δZi
, P ′

n = 1
n

n∑
i=1

δZ′
i
.

Take s ∈ {±1}d and create signed empirical measures

Ps,n = 1
n

n∑
i=1

siδZi , P
′
s,n = 1

n

n∑
i=1

siδZ′
i
.

Theorem 9.5 (Symmetrization Lemma). Let σ ∼ Rad(n) be a sample of Rademachar distribution (the discrete
uniform distribution over {±1}n) that is independent of Z1:n, Z

′
1:n. For F ⊆ RZ , functions ψ : F × Zn → R,

ψ̃ : F × Z2n → R and ε > 0, 0 < δ < 1, assume the following holds:

(U) w.p. 1 − δ, for all f ∈ F , it follows that

Pσ,nf ≤ ψ(f, Z1:n) + ε.

(NU) For all f ∈ F , z1:2n ∈ Z2n, it follows that

ψ(f, z1:n) + ψ(f, zn+1:2n) ≤ ψ̃(f, z1:2n).

(S) For all f ∈ F , z1:2n ∈ Z2n and π ∈ Perm([2n]), it follows that

ψ̃(f, z1:2n) = ψ̃(f, zπ(1:2n))

where Perm(A) = {f : A → A|f is a bijection} is the set of all the permutations on a finite set A and
zπ(1:2n) = zπ(1):π(2n).

Then w.p. 1 − 2δ, it holds that for all f ∈ F ,

P ′
nf ≤ Pnf + ψ̃(f, Z1:nZ

′
1:n) + 2ε.
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For a fixed s ∈ {±1}n, let

Es := {∀f ∈ F , P ′
s,nf − Ps,nf ≤ ψ̃(f, Z1:n, Z

′
1:n) + 2ε}

and let Ê be defined as
Ê := P ′

σ,nf − Pσ,nf ≤ ψ̃(f, Z1:n, Z
′
1:n) + 2ε. (9.1)

We now state an intuitive lemma and delay the proof to the end.

Lemma 9.6. Under the conditions of Theorem 9.5, for all s ∈ {±1}n, P(Es) = P(E1).

proof of Theorem 9.5. Note that we only need to prove that P(E1) ≥ 1 − 2δ by definition. Let E = {∀f ∈ F :
−Pσ,nf ≤ ψ(f, Z1:n) + ε} and E ′ = {∀f ∈ F : P ′

σ,nf ≤ ψ(f, Z ′
1:n) + ε}. Then from the assumptions specified

in Theorem 9.5, we can obtain P(E) = P(E ′) because −Pσ,nf = P−σ,nf by definition and σ D= −σ, Z1:n
D= Z ′

1:n

where D= denotes equality in distribution. Then by union bound, Ẽ = E ∩ E ′ holds w.p. 1 − 2δ. By definition of
Ẽ and Ê , we have that Ẽ ⊆ Ê hence P(Ê) ≥ P(Ẽ) ≥ 1 − 2δ. Now it suffices to show that P(Ê) = P(E1). Since
Ê = ∪s∈{±1}n{σ = s} ∩ Ê ,

P(Ê) = P

 ⋃
s∈{±1}n

{σ = s} ∩ Ê


=

∑
s∈{±1}n

P
(

{σ = s} ∩ Ê
)

({σ = s} are disjoint sets)

=
∑

s∈{±1}n

P ({σ = s} ∩ Es)

=
∑

s∈{±1}n

P ({σ = s})P (Es) (independence between σ and Z1:n, Z
′
1:n)

= 1
2n

∑
s∈{±1}n

P(Es)

= P(E1). (Lemma 9.6)

proof of Lemma 9.6. Fix (s1, ..., sn) = s ∈ {±1}n and let si,− = (s1, ...,−si, ..., sn) be the sign vector that flips
s in the i-th position. Then it suffices to show that P(Es) = P(Esi,−) for all i ∈ [n] because for all s, s′ ∈ {±1}n,
we can transform Es to Es′ by flipping signs for at most n times without changing the probability. Then for f ∈ F ,
we introduce the abbreviated notation

R−i = (Z1, . . . , Zi−1, Zi+1, . . . , Zn, Z
′
1, . . . , Z

′
i−1, Z

′
i+1, . . . , Z

′
n),

U(Zi, Z
′
i, R−i, f) = si(f(Zi) − f(Z ′

i))
n

+ 1
n

∑
j ̸=i

sj(f(Z ′
j) − f(Zj))


V (Zi, Z

′
i, R−i, f) = ψ̃(f, Z1:n, Z

′
1:n) + 2ε

we write out Es and Esi,− :

Es = {∀f ∈ F : U(Zi, Z
′
i, R−i, f) ≤ V (Zi, Z

′
i, R−i, f)}

Esi,− = {∀f ∈ F : U(Z ′
i, Zi, R−i, f) ≤ V (Zi, Z

′
i, R−i, f)}
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Then by tower rule,

P(∀f ∈ F : U(Zi, Z
′
i, R−i, f) ≤ V (Zi, Z

′
i, R−i, f)) = E[P(∀f ∈ F : U(Zi, Z

′
i, R−i, f) ≤ V (Zi, Z

′
i, R−i, f)|R−i)].

It suffices to prove that

P(∀f ∈ F : U(Zi, Z
′
i, R−i, f) ≤ V (Zi, Z

′
i, R−i, f)|R−i) = P(∀f ∈ F : U(Z ′

i, Zi, R−i, f) ≤ V (Zi, Z
′
i, R−i, f)|R−i).

Assume the existence of the regular conditional distribution PZi,Z′
i
|R(dzi, dz

′
i|R), the LHS can be written as∫

Z2
PZi,Z′

i
|R(dzi, dz

′
i|R)I(∀f ∈ F , U(zi, z

′
i, R−i, f) ≤ V (zi, z

′
i, R−i, f))

=
∫

Z2
PZi,Z′

i
(dzi, dz

′
i)I(∀f ∈ F , U(zi, z

′
i, R−i, f) ≤ V (zi, z

′
i, R−i, f)) (Independence)

=
∫

Z2
PZ′

i
,Zi

(dz′
i, dzi)I(∀f ∈ F , U(z′

i, zi, R−i, f) ≤ V (z′
i, zi, R−i, f)) ((Zi, Z

′
i)

D= (Z ′
i, Zi))

=
∫

Z2
PZ′

i
,Zi

(dz′
i, dzi)I(∀f ∈ F , U(z′

i, zi, R−i, f) ≤ V (zi, z
′
i, R−i, f)) (Assumption (S))

=
∫

Z2
PZ′

i
,Zi|R(dz′

i, dzi|R)I(∀f ∈ F , U(z′
i, zi, R−i, f) ≤ V (zi, z

′
i, R−i, f)), (Independence)

which is RHS by definition.
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