
CMPUT 654 Fa 23: Theoretical Foundations of Machine Learning Fall 2023

Lecture 8: Tsybakov Noise & Uniform Bernstein (Sept 28)
Lecturer: Csaba Szepesvári Scribes: Tian Tian
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8.1 Recap

At the end of the last class, we talked about a variance condition, which we recall as follows. Let Z be a set and P a
distribution over Z. Let G be a set of measurable functions that maps Z to R (denote as M(Z, R)). For c0, c1 > 0,
we define

VarZ(c0, c1, P ) = {g ∈ M(Z, R) : VarP (g) ≤ c2
0 + c1Pg}, (8.1)

where Pg =
∫

g dP and VarP (g) =
∫

(g − Pg)2dP .
The reason why we introduce such variance condition is that we can apply Bernstein inequality and obtain a tight

uniform convergence rate. Recall the Bernstein inequality has a variance term in it, and if the function class satisfies
the above variance condition, then the variance can be upper-bounded in terms of the integral of the expected value
of the function. To see more examples of problem where such variance condition is satisfied, we begin today’s
lecture with binary classification.

In PAC learning, we got fast rate for binary classification under no misspecification and no noise. What happens
when noise is present? Would noise make sample complexity that much worse? The suspicion is that we should still
see fast rate of O(1/ε). In binary classification, one only needs to decide whether if the label is 1 or 0 based on
whether the mean of the Bernoulli random variable is above or below 0.5. The further the mean is from 0.5, one
would be more definitive in the decision of 1 or 0. We expect the misclassification error decreases the further the
mean is from 0.5. We shall see in this lecture, why our suspicion could be true.

We begin this lecture by introducing another class of noise called the Tsybakov noise condition. Then we define
what it is, how the binary classification problem satisfies this Tsybakov noise condition, and how it all relates
to the variance condition Eq. (8.1). Finally in the last section, we show how the variance condition can be used
with Bernstein inequality to obtaining a uniform convergence. From the bound we get, we can see how the binary
classification could also achieve a fast rate of O(1/ε).

8.2 Tsybakov noise condition

Consider the binary classification problem on X × {0, 1}. Let P be a distribution on X × {0, 1} and (X, Y ) ∼ P .

Definition 8.1. We say P satisfies the Tsybakov’s noise condition (i.e., P ∈ TsybX (c, ε0, β)) if there exists
β ∈ (0, 1], c > 0, ε0 ∈ (0, 0.5] such that

P(|P(Y = 1|X) − 0.5| ≤ ε) ≤ cε
β

1−β , for all ε ∈ [0, ε0].

Note that β ∈ (0, 1] and β/1 − β goes from zero is infinity in a monotonous fashion. If β = 1,
P(|P(Y = 1|X) − 0.5| ≤ ε) is interpreted as 0. This is the case where there is no probability mass in the
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region where P(Y = 1|X) is ε0 close to 0.5. In other words, |P(Y = 1|X) − 0.5| ≥ ε0 for all X . Since we want to
learn P , Tsybakov noise condition characterizes how hard is going to be. The hardness measure is β. If β is closer
to 1 means that P will be easier to learn as oppose to if β is closer to 0.

How does all this relate to the variance condition Eq. (8.1)? For ease of writing, let ηP (x) = P(Y = 1|X = x).
The optimal decision at P , fP (x) = I{ηP (x) ≥ 0.5}. The binary function class F ⊆ {0, 1}X . For a f ∈ F , we
define the loss gf : X × {0, 1} → {0, 1} by gf (x, y) = I{f(x) ̸= y}. Then the loss set

G = ℓ01 ◦ F = {gf : f ∈ F},

and the shifted loss set

G̃ = G − {gfP
}.

Claim 8.2. If P ∈ TsybX (c, ε0, β), then there exists c′ > 0 s.t. for all g̃ ∈ G̃:

P g̃2 ≤ (c′)2−β(P g̃)β .

Following from the claim,

1. β = 1, G̃ ⊆ VarX ×{0,1}(0, c′, P ),

2. β < 1, for all γ > 0, G̃ ⊆ VarX ×{0,1}((1 − β)0.5γ
0.5

1−β (c′), βc′γ− 1
β , P ),

3. X = [0, 1], Y = {0, 1}, (X, Y ) ∼ P ∈ M1(X × {0, 1})

P(Y = 1|X = x) =
{

p x ∈ X0,

1 − p x ∈ Xc
0 ,

where p ∈ [0, 0.5) is the uniform noise and X0 ⊆ X . Intuitively, for some subset of the input, we have
1 with probability p and for all other input, we have 0 with probability 1 − p. Pick an ε and consider the
lower-bracket cover G̃(ε) of G̃, then there exist c0(p), c1(p) > 0 s.t. G̃(ε) ∈ VarX ×[0,1](

√
εc0(p), c1(p), P ).

How do we use all this with the Bernstein inequality to get a tighter bound on the losses? Before we state the
main theorem, recall Bernstein inequality.

8.3 Bernstein inequality

For b, V > 0, we use Ber(b, V ) to denote the class of random variables that satisfies the Bernstein condition with
parameters b, V > 0. That is, X ∈ Ber(b, V ), if for some c ∈ R,

E[(X − c)m] ≤ m!
(

b

3

)m−2
V

2 .

Note that when m = 2, the condition is equivalent to

E[(X − c)2] ≤ V .

That is, V must be an upper bound on the variance of X . As it is well known, if X takes values in [E[X]−b,E[X]+b]
with probability one then it is in Ber(b, Var[X]) (this is in fact how the condition is chosen). If X satisfies the
Bernstein condition with some parameters, the sample mean X̄n of iid copies of X concentrate around their common
mean fast:
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Lemma 8.3 (Bernstein’s inequality). For any random variable X that satisfies the Bernstein condition (i.e.,
X ∈ Ber(b, V )), then w.p. 1 − δ,

X̄n < µ +
√

2V ln(1/δ)
n

+ b ln(1/δ)
3n

.

Now note that if X ∈ Ber(b, V ) then −X ∈ Ber(b, V ) also holds. Applying the lemma to Y = −X , we get
that w.p. 1 − δ,

X̄n > µ −
√

2V ln(1/δ)
n

− b ln(1/δ)
3n

.

8.4 A Uniform Bernstein Inequality

Theorem 8.4. Fix ε0, b, c0, c1 > 0, G ⊆ RZ , 0 ≤ ε ≤ ε0, P ∈ M1(Z). Let Z be a random variable whose
distribution is P , and let G(ε) be lower bracketting cover of G. Assume that the following hold:

1. for all g ∈ G(ε), g(Z) ∈ Ber(b, VarP g);

2. G(ε) ⊆ VarZ(c0, c1, P ).

Then, w.p. 1 − δ, for all g ∈ G

Pg − Png ≤
√

2c2
0 ln(Nε/δ)

n
+ ε +

√
2c1(Pg)+ ln(Nε/δ)

n
+ b ln(Nε/δ)

3n
,

where Nε = |G(ε)|.

Proof. Let G(ε) = {g1, . . . , gNε
}. Pick g ∈ G. Then, there exist j ∈ [Nε] such that

gj ≤ g, Pg ≤ Pgj + ε.

Then, it follows that

Pg − Png ≤ Pgj − Pngj + ε. (8.2)

By assumption (1), for any fixed i ∈ [Nε], we can apply Bernstein’s inequality to bound Pgi − Pngi. By taking a
union bound, we get that with probability 1 − δ,

for all i ∈ [Nε] we have Pgi − Pngi ≤
√

2Vi ln(Nε/δ)
n

+ b ln(Nε/δ)
3n

, (8.3)

where Vi = Varp(gi). Now, by assumption (2), G(ε) ⊆ VarZ(c0, c1, P ). Hence, Vi = Varp(gi) ≤ c2
0 + c1(Pgi)+.

Then it follows that on the event when Eq. (8.3) holds, for any i ∈ [Nε],

Pgi − Pngi ≤
√

2c2
0 ln(Nε/δ)

n
+

√
2c1(Pgi)+ ln(Nε/δ)

n
+ b ln(Nε/δ)

3n
.

we we used
√

a + b ≤
√

a +
√

b to get the last inequality. Since this inequality holds for all i ∈ [Nε], it also holds
for i = j. Chaining this inequality with Eq. (8.2) and using that (Pgj)+ ≤ (Pg)+ gives the result.

Note if we could make c0 in the order of 1/n, then we get multiplicative Chernoff. Then it all boils down to
what cases is c0 in the order of 1/n. If so, then we get O(1/ε) sample complexity, and this will be the case with
squared loss that we mentioned in the last lecture as another example of problem that satisfies the variance condition
Eq. (8.1). Similarly, we get a O(1/ε) sample complexity for the binary classification case with Tsybakov noise
condition when β = 1. In general, we get a worse rate between 1/ε and 1/ε2 depending on β.
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