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7.1 Outline

- Recap of lower bracketing cover and using it in Chernoff bounds.

- Linear threshold class example.

- Bounded variance class.

7.2 Recap

In the last lecture, we started talking about infinite function classes and the fact that we just need to account for a
finite cover of the infinite function class in the union bound to get uniform deviation bounds. The covering happens
at some accuracy or scale ε, and there is a tradeoff between the approximation error introduced by ε and the number
of elements in the cover.

We also talked about the lower bracketing cover which is useful in obtaining one-sided uniform deviation
bounds. Recall the setting for defining a lower bracketing cover: Let G ⊆ RZ and P ∈ M1(Z).

Definition 7.1 (Lower bracketing cover). Fix ε > 0. Then g1, . . . , gm : Z → R is a lower bracketing cover of G
with distribution P and scale ε (shorthand: G@P@ε) such that for any g ∈ G there exists j ∈ [m] such that: (1)
gj ≤ g; and (2) Pg ≤ Pgj + ε.

The minimum number of functions in the lower bracketing cover is called the lower bracketing number denoted
by Nε = NLB(ε, G, P ). Note that the cover g1, . . . , gm may or may not be in G. A lower bracketing cover can be
used for one-sided uniform deviations, which we used to analyze ERM.

Further, recall that the empirical distribution is given by Pn = 1
n

∑n
i=1 δzi

where z1, . . . , zn ∼ P iid. Then the
ERM is

ĝn = arg min
g∈G

Png ,

which implicitly selects a predictor that underlies the loss. Using Chernoff’s inequality, we get the following bound
for ERM.

Proposition 7.2. Let G ⊆ [0, 1]Z . For every δ ∈ (0, 1):

1. w.p. 1 − δ, P ĝn ≤ infg∈G Pg + infε>0

(
ε + 2

√
ln(Nε+1)/δ

2n

)
.
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Figure 7.1: An example of a linear threshold function fw(x) = I(x ≥ w) with w = 0.6.

2. for every ε > 0, w.p. 1−δ, P ĝn ≤ infg∈G

(
Pg +

√
2P g ln(Nε+1)/δ

n

)
+ε+

√
2P ĝn ln(Nε+1)/δ

n + ln(Nε+1)/δ
3n .

Remark 7.3. 1. For the second bound above, we did not take inf over ε > 0 in the RHS, since P ĝn is random
on the RHS. But we can first solve for inf over G, solve a quadratic to get a bound for P ĝn, and then take the
inf over ε.

2. If g1, . . . , gm were chosen from the class G, then the size of the cover might increase slightly and we might
lose some constant factors in the bounds.

7.3 Covering the Linear Threshold Class

Setting. Let X = [0, 1] and Y ∈ {0, 1}. Let the function class be F = {fw : X → Y : w ∈ [0, 1]} where
fw(x) = I(x ≥ w) is the linear threshold function (Fig. 7.1). We consider the zero-one loss where the loss class
is defined as G = {ℓ01 ◦ fw : w ∈ [0, 1]}. The loss function is a map ℓ01 ◦ fw : X × {0, 1} → {0, 1} defined as
(x, y) 7→ I(f(x) ̸= y). We also write the loss ℓ01 ◦ fw as gw.

Lower bracketing cover. We first discretize the one-dimensional space of w’s at the scale of ε. Let wj =
{ε, 2ε, . . . , Nεε}, where Nε = ⌈ 1

ε ⌉.
The elements of the cover are given by gj = gwj

I(x /∈ [wj − ε, wj ]). To check the first condition for a lower
bracketing cover, notice that for any function gw, outside [wj − ε, wj ] we have gw = gwj

as fw = fwj
. Inside

[wj −ε, wj ], we have gi = 0 by definition. Therefore gi ≤ gw. To check the second condition for a lower bracketing
cover, we follow the same argument as above and notice that the length of the interval [wj − ε, wj ] is ε and the
difference between gw and gj is bounded by 1, which gives Pgw ≤ Pgi + ε. We illustrate these conditions in
Fig. 7.2.

We can also define general bracketing for two-sided uniform convergence.

Definition 7.4 (Bracketing). Fix ε > 0. Let the function class G be equipped with a pseudometric d and let gL
i , gU

i

be functions from cZ to R for i ∈ [m]. We call the set G(ε) =
{

(gL
1 , gU

1 ), . . . , (gL
m, gU

m)
}

an ε-bracket of G under
d if ∀g ∈ G there exists j ∈ [m] such that (1) gL

j ≤ g ≤ gU
j ; and (2) d(gL

j , gU
j ) ≤ ε.
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Figure 7.2: Lower bracketing cover for linear threshold functions. The goal is to cover a function gw so that w ∈ [wj − ε, wj ].
The cover element is gj = wjI(x ̸ in[wj − ε, wj ]). The indicated losses are for gj for the cases y = 0 and y = 1. The blue
horizontal lines show the function. The blue horizontal lines indicate the intervals on which gj = gwj and the orange lines show
the interval when gj = 0.

7.4 Bounded Variance Condition

Multiplicative Chernoff gave fast convergence rates (1/n), however, it was restricted to the case when the
predictors/losses are bounded and the loss is small. For some special cases when the variance of the loss is
bounded, we can still get fast rates by exploiting the bounded variance property. This is given by Bernstein’s
inequality. But before delving into Bernstein’s, let us define the bounded variance class and discuss some examples
of loss classes that have bounded variance.

Let Z = X × Y for some sets X , Y and g : Z → R be a measurable function. Further, let P ∈ M1(Z). The
variance of g measured against P is given by VarP (g) = P (g − Pg)2.

Definition 7.5 (Bounded variance class). Fix c0, c1 > 0. Then the bounded variance class is defined as

V arZ(c0, c1, P ) =
{

g : Z → R : VarP (g) ≤ c2
0 + c1Pg

}
.

Examples.

1. Bounded functions. If 0 ≤ g ≤ 1, then g ∈ VarZ(0, 1, P ).

2. Convex function class. For some set X , let F ⊂ M(X ,R) and assume that F is convex (i.e., for any
α ∈ [0, 1], f, g ∈ F , αf + (1 − α)g ∈ F also holds). Let Z = X × R and

G = {ℓf : ℓf : Z → R, ℓf (x, y) = (f(x) − y)2, f ∈ F} .

By abusing notation, we also write for this set G = ℓsq ◦ F . Let P ∈ M1(Z) be such that for some M > 0
constant, for any g ∈ G, g(Z) ≤ M2 with probability one, where Z ∼ P . Define g∗ = arg ming∈G Pg

(which is assumed to exist) and

G̃ = {g − g∗ : g ∈ G} (= G − {g∗}) ,

so that inf g̃∈G̃ P g̃ = 0. Then,

G̃ ⊂ VarZ(0, 4M2, P ).
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3. Best predictor not in the function class. Fix M > 0. Let F ⊂ M(X , [0, M ]) be set set of functions
bounded in the interval [0, M ], Z = X × [0, M ], P ∈ M1(Z) be a probability distribution over Z .

Now let G = ℓsq ◦ F and f∗(x) = E[Y |X = x] for x ∈ X be the best predictor which may not be in the F .
Define

G̃ = G − {ℓf∗} .

Then,
G̃ ⊂ VarZ(0, 2M2, P ) .
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