CMPUT 654 Fa 23: Theoretical Foundations of Machine Learning Fall 2023 Lecture 6: Small Risk Bound, Empirical Processes, Lower Bracketing (Sept 11) *Lecturer: Csaba Szepesvari Scribes: Shuai Liu ´*

Note: *ET_FX* template courtesy of UC Berkeley EECS dept. [\(link](https://inst.eecs.berkeley.edu/~cs294-8/sp03/Materials/) to directory) Disclaimer: *These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.*

This lecture's notes illustrate some uses of various LATEX macros. Take a look at this and imitate.

6.1 Recap

Recall the setting of ERM introduced in the previous lectures. We have a dataset (or datalist) D_n $\{(X_i, f_*(X_i))\}_{i=1}^n$ where $X_i \sim P \in \mathcal{M}_1(\mathcal{X})$ are independent and $f_* \in C_d \subset 2^{\mathbb{Z}^d}$. Let $|C_d| = N < \infty$. For a fixed function $f \in \underline{2}^{\underline{2}^d}$, let $L_n(f) = \sum_{i=1}^n \mathbb{I}(f(X_i) \neq f_*(Y_i))$ and $L(f) = \mathbb{E}[\mathbb{I}(f(X) \neq f_*(X))]$ for $X \sim P$. The empirical risk minimizer is $f_n = \arg \min_{f \in C_d} L_n(f)$. We used the multiplicative Chernoff bound to obtain the following proposition:

Proposition 6.1. *For* $\delta \in (0,1)$, $f \in \underline{2}^{\underline{2}^d}$ *and* $n, N \in \mathbb{N}$, *let* $\beta_\delta^n(f,N) = \sqrt{\frac{2L(f)\log(\frac{N}{\delta})}{n}}$ $\frac{\log(\frac{\pi}{\delta})}{n}$ *. For all* $f_0 \in C_d$ *and* $\delta \in (0,1)$ *, let* $U(\delta, f_0, C_d)$ *be the event that:*

$$
U(\delta, f_0, C_d) := \left\{ \forall f \in C_d : L(f) \le L_n(f) + \beta_\delta^n(f, N+1) \right\} \bigcap \left\{ L_n(f_0) \le L(f_0) + \beta_\delta^n(f_0, N+1) + \frac{\log(\frac{N+1}{\delta})}{3n} \right\}
$$

It follows that $\mathbb{P}(U(\delta, f_0, C_d)) \geq 1 - \delta$ *.*

For all $f_0 \in C_d$, on the event $U(\delta, f_0, C_d)$, we have that:

$$
L(f_n) \le L_n(f_n) + \beta_\delta^n(f_n, N+1)
$$

\n
$$
\le L_n(f_0) + \beta_\delta^n(f_n, N+1)
$$

\n
$$
\le L(f_0) + \beta_\delta^n(f_0, N+1) + \beta_\delta^n(f_n, N+1) + \frac{\log(\frac{N+1}{\delta})}{3n},
$$

\n(f_n is the sol. to ERM)

.

which gives us the following theorem:

Theorem 6.2. *For all* $f_0 \in C_d$ *, w.p.* $1 - \delta$ *,*

$$
L(f_n) \le L(f_0) + \beta_\delta^n(f_0, N+1) + \beta_\delta^n(f_n, N+1) + \frac{\log(\frac{N+1}{\delta})}{3n}.
$$

Since the above theorem holds for all $f_0 \in C_d$, we can take the infimum:

Corollary 6.3. *w.p.* $1 - \delta$ *,*

$$
L(f_n) \leq \beta_\delta^n(f_n, N+1) + \frac{\log(\frac{N+1}{\delta})}{3n} + \inf_{f \in C_d(\delta)} (L(f) + \beta_\delta^n(f, N+1))
$$

Remark 6.4. In our current setting, $\inf_{f \in C_d(\delta)} (L(f) + \beta_{\delta}^n(f, N+1)) = 0$ because $L(f_*) + \beta_{\delta}^n(f_*, N+1) = 0$. Corollary [6.3](#page-0-0) cannot buy us anything more than the bound we got in the last class because there is still a factor of $\sqrt{1/n}$ in $\beta_{\delta}^{n}(f_{n}, N+1)$. However, in more general settings where $L(f_{*}) \neq 0$, i.e., noises are injected to $f_{*}(X_{i})$, we may get some benefit from Corollary [6.3.](#page-0-0)

6.2 Empirical Process

Now consider an arbitrary function class $\mathcal{F} \subset \mathcal{Y}^{\mathcal{X}}$ which is potentially infinite and an arbitrary (measurable) loss function $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ (instead of the 0-1 loss we considered in the previous section). Let $f_n = \arg \max_{f \in \mathcal{F}} L_n(f)$ be the empirical risk minimizer on F. If we were to apply the technique in Proposition [6.1,](#page-0-1) the term $L_n(f) - L(f)$ for some $f \in \mathcal{F}$, would be the quantity that we would like to bound. To do that, one of the options is to bound:

$$
\sup_{f \in \mathcal{F}} |L_n(f) - L(f)| = \sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^n \ell(f(X_i), Y_i) - \int \ell(f(x), y) P(dx, dy) \right| \tag{6.1}
$$

To reduce clutter, we define $D_i : \mathcal{F} \to \mathbb{R}$ for $i \in \mathbb{N}$ such that

$$
D_i(f) = \ell(f(X_i), Y_i) - \int \ell(f(x), y) P(dx, dy),
$$

and $\bar{D}_n : \mathcal{F} \to \mathbb{R}$ such that

$$
\bar{D}_n(f) = \frac{1}{n} \sum_{i=1}^n D_i(f), \quad \forall f \in \mathcal{F}.
$$

Note that $D_1(f), D_2(f), \dots$ are i.i.d. random variables. Then Eq. [\(6.1\)](#page-1-0) can be written as:

$$
\sup_{f \in \mathcal{F}} \bar{D}_n(f).
$$

We call $\{\bar{D}_n(f)\}_{n=1}^{\infty}$ an empirical process. Empirical process theory is a subarea of probability theory that studies the question of convergence of the process to 0 in different ways, e.g., convergence in probability or almost sure convergence. If $\bar{D}_n(f) \to 0$ [in probability,](https://en.wikipedia.org/wiki/Convergence_of_random_variables#Convergence_in_probability) it is called the *Weak Law of Large Number* and when $\sup_{f \in \mathcal{F}} \bar{D}_n(f) \to 0$ happens, we say that *uniform convergence* happens.

6.3 Lower Bracketing Number

Now we further reduce the clutter by introducing new notations. Let $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$

$$
G = \{(x, y) \to \ell(f(x), y) : f \in \mathcal{F}\} \subseteq \mathbb{R}^{\mathcal{X} \times \mathcal{Y}} = \mathbb{R}^{\mathcal{Z}}.
$$

Let $Z_1, Z_2, ... Z_n \sim P \in \mathcal{M}_1(\mathcal{Z})$ and let $P_n(dz) = \frac{1}{n} \sum_{i=1}^n \delta_{Z_i}(dz)$ be the *empirical distribution* where $\delta_{Z_i}(\{z\}) = 1$ if $z = Z_i$ and 0 otherwise. Note that δ_{Z_i} is a random measure. For $P \in M_1(\mathcal{Z})$, let $Pg := \int g dP$ for $g \in \mathcal{G}$. Then Eq. [\(6.1\)](#page-1-0) can be written as:

$$
\sup_{g \in \mathcal{G}} |P_n g - P_g|
$$

Definition 6.5. Let $\mathcal{G} \subseteq \mathbb{R}^{\mathcal{Z}}$ and fix $P \in \mathcal{M}_1(\mathcal{Z})$. For a fixed $\varepsilon, g_1, ...g_m \in \mathbb{R}^{\mathcal{Z}}$ is called a lower bracketing cover of $\mathcal{G} \otimes \mathcal{P} \otimes \varepsilon$ if for all $q \in \mathcal{G}$, there exists $j \in [m]$ such that:

- 1. $g_j \leq g$,
- 2. $Pg \leq Pg_i + \varepsilon$.

Note that $q_1, ..., q_m$ is not necessarily in \mathcal{G} .

Theorem 6.6. Let $\mathcal{G} \subset [0,1]^{\mathcal{Z}}$, $P \in \mathcal{M}_1(\mathcal{Z})$ and $Z_1, ..., Z_n \sim P$ for $n \in \mathbb{N}$. For all $\varepsilon > 0$, $\delta \in (0,1)$ and $g \in \mathcal{G}$, *it follows that w.p.* $1 - \delta$,

$$
Pg - P_n g \le \inf_{\varepsilon > 0} \left[\varepsilon + \sqrt{\frac{\log(N_\varepsilon/\delta)}{2n}} \right],
$$

where for all $\varepsilon > 0$ *,*

 $N_{\varepsilon} = \min\{n \in \mathbb{N}:$ *there exists* $g_1, ..., g_n$ *such that* $(g_1, ..., g_n)$ *is a lower bracketing cover of* $\mathcal{G} \otimes P \otimes \varepsilon\}$

Proof. Fix an $\varepsilon > 0$. Let $m = N_{\varepsilon}$ and $g_1, ..., g_m$ be a lower bracketing cover of $\mathcal{G} \otimes P \otimes \varepsilon$. Using additive Chernoff bound, we have that w.p. at least $1 - \delta$, it follows that

$$
Pg_j \le P_n g_j + \sqrt{\frac{\log(N_{\varepsilon}/\delta)}{2n}}.\tag{6.2}
$$

Pick $g \in \mathcal{G}$ and by definition of lower bracketing cover, there exists $j \in [m]$ such that

$$
Pg \le Pg_j + \varepsilon \le P_n g_j + \varepsilon + \sqrt{\frac{\log(N_{\varepsilon}/\delta)}{2n}} \qquad \text{(Definition 6.5(1) and Eq. (6.2))}
$$

$$
\le P_n g + \varepsilon + \sqrt{\frac{\log(N_{\varepsilon}/\delta)}{2n}}.
$$
 (Definition 6.5(2))

Since *ε* was arbitrary, we then take the infimum over *ε*:

$$
Pg \le P_n g + \inf_{\varepsilon > 0} \left[\varepsilon + \sqrt{\frac{\log(N_{\varepsilon}/\delta)}{2n}} \right].
$$

 \Box

Corollary 6.7. *Let* $\hat{g}_n = \arg \min_{g \in \mathcal{G}} P_n g$ *be the empirical risk minimizer, then it follows that w.p. at least* $1 - \delta$ *:*

$$
P\hat{g}_n \le \inf_{g \in \mathcal{G}} P g + 2 \inf_{\varepsilon} \left[\varepsilon + \sqrt{\frac{\log((N_{\varepsilon} + 1)/\delta)}{2n}} \right]
$$

Proof. Fix an $\varepsilon > 0$, by definition of infimum, there exists a g_{ε} such that

$$
Pg_{\varepsilon} \le \inf_{g \in \mathcal{G}} Pg + \varepsilon \tag{6.3}
$$

Denote the lower bracketing cover of $\mathcal{G} \otimes P \otimes \varepsilon =: C_{LB}(G, P, \varepsilon)$. Let $U(\delta, g_{\varepsilon}, C_{LB}(G, P, \varepsilon))$ be:

$$
U(\delta, g_{\varepsilon}, C_{LB}(G, P, \varepsilon)) := \left\{ \forall g \in C_{LB}(G, P, \varepsilon) : P g \leq P_n g + \sqrt{\frac{\log((N_{\varepsilon} + 1)/\delta)}{2n}} \right\} \cup \left\{ P_n g_{\varepsilon} \leq P g_{\varepsilon} + \sqrt{\frac{\log((N_{\varepsilon} + 1)/\delta)}{2n}} \right\}.
$$

Then $U(\delta, g_{\varepsilon}, C_{LB}(G, P, \varepsilon))$ holds w.p. $1 - \delta$. On $U(\delta, g_{\varepsilon}, C_{LB}(G, P, \varepsilon))$, we have that there exists a $j \in [m]$ such that:

> $P\hat{g}_n \leq Py_j + \varepsilon$ (Defn. of lower bracketing cover) $\leq P_n g_j + \varepsilon +$ $\sqrt{\log((N_{\varepsilon}+1)/\delta)}$ 2*n* (Chernoff's bound) $\leq P_n\hat{g}_n + \varepsilon +$ $\sqrt{\log((N_{\varepsilon}+1)/\delta)}$ 2*n* (Defn. of lower bracketing cover) $\leq P_n g_{\varepsilon} + \varepsilon +$ $\sqrt{\log((N_{\varepsilon}+1)/\delta)}$ 2*n* (Defn. of \hat{g}_n) $\leq P g_{\varepsilon} + \varepsilon + 2\sqrt{\frac{\log((N_{\varepsilon}+1)/\delta)}{2m}}$ 2*n* (Chernoff's bound) $\leq \inf_{g \in \mathcal{G}} P g_{\varepsilon} + 2\varepsilon + 2\sqrt{\frac{\log((N_{\varepsilon}+1)/\delta)}{2n}}$ 2*n* (Eq. [\(6.3\)](#page-2-1))

> > \Box

Since *ε* was arbitrary, we then take the infimum over *ε*:

$$
P\hat{g}_n \le \inf_{g \in \mathcal{G}} P g + 2 \inf_{\varepsilon} \left[\varepsilon + \sqrt{\frac{\log((N_{\varepsilon} + 1)/\delta)}{2n}} \right]
$$

Similarly, using the multiplicative Chernoff bound, we can get the following corollary:

Corollary 6.8. *Let* $\hat{g}_n = \arg \min_{g \in \mathcal{G}} P_n g$ *be the empirical risk minimizer, then it follows that w.p. at least* $1 - \delta$ *:*

$$
P\hat{g}_n \le \inf_{g \in \mathcal{G}, \varepsilon > 0} \left[P g + 2\varepsilon + \sqrt{\frac{2Pg \log((N_\varepsilon + 1)/\delta)}{2n}} + \sqrt{\frac{P\hat{g}_n \log((N_\varepsilon + 1)/\delta)}{2n}} + \frac{\log((N_\varepsilon + 1)/\delta)}{3n} \right]
$$