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6.1 Recap

Recall the setting of ERM introduced in the previous lectures. We have a dataset (or datalist) Dn =
{(Xi, f∗(Xi))}n

i=1 where Xi ∼ P ∈ M1(X ) are independent and f∗ ∈ Cd ⊂ 22d

. Let |Cd| = N < ∞.
For a fixed function f ∈ 22d

, let Ln(f) =
∑n

i=1 I(f(Xi) ̸= f∗(Yi)) and L(f) = E[I(f(X) ̸= f∗(X))] for X ∼ P .
The empirical risk minimizer is fn = arg minf∈Cd

Ln(f). We used the multiplicative Chernoff bound to obtain the
following proposition:

Proposition 6.1. For δ ∈ (0, 1), f ∈ 22d

and n, N ∈ N, let βn
δ (f, N) =

√
2L(f) log( N

δ )
n . For all f0 ∈ Cd and

δ ∈ (0, 1), let U(δ, f0, Cd) be the event that:

U(δ, f0, Cd) :=
{

∀f ∈ Cd : L(f) ≤ Ln(f) + βn
δ (f, N + 1)

} ⋂ {
Ln(f0) ≤ L(f0) + βn

δ (f0, N + 1) +
log( N+1

δ )
3n

}
.

It follows that P(U(δ, f0, Cd)) ≥ 1 − δ.

For all f0 ∈ Cd, on the event U(δ, f0, Cd), we have that:

L(fn) ≤ Ln(fn) + βn
δ (fn, N + 1)

≤ Ln(f0) + βn
δ (fn, N + 1) (fn is the sol. to ERM)

≤ L(f0) + βn
δ (f0, N + 1) + βn

δ (fn, N + 1) +
log( N+1

δ )
3n

,

which gives us the following theorem:

Theorem 6.2. For all f0 ∈ Cd, w.p. 1 − δ,

L(fn) ≤ L(f0) + βn
δ (f0, N + 1) + βn

δ (fn, N + 1) +
log( N+1

δ )
3n

.

Since the above theorem holds for all f0 ∈ Cd, we can take the infimum:

Corollary 6.3. w.p. 1 − δ,

L(fn) ≤ βn
δ (fn, N + 1) +

log( N+1
δ )

3n
+ inf

f∈Cd(δ)
(L(f) + βn

δ (f, N + 1))

Remark 6.4. In our current setting, inff∈Cd(δ)(L(f) + βn
δ (f, N + 1)) = 0 because L(f∗) + βn

δ (f∗, N + 1) = 0.
Corollary 6.3 cannot buy us anything more than the bound we got in the last class because there is still a factor of√

1/n in βn
δ (fn, N + 1). However, in more general settings where L(f∗) ̸= 0, i.e., noises are injected to f∗(Xi),

we may get some benefit from Corollary 6.3.
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6.2 Empirical Process

Now consider an arbitrary function class F ⊂ YX which is potentially infinite and an arbitrary (measurable) loss
function ℓ : Y×Y → R (instead of the 0-1 loss we considered in the previous section). Let fn = arg maxf∈F Ln(f)
be the empirical risk minimizer on F . If we were to apply the technique in Proposition 6.1, the term Ln(f) − L(f)
for some f ∈ F , would be the quantity that we would like to bound. To do that, one of the options is to bound:

sup
f∈F

|Ln(f) − L(f)| = sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1
ℓ(f(Xi), Yi) −

∫
ℓ(f(x), y)P (dx, dy)

∣∣∣∣∣ (6.1)

To reduce clutter, we define Di : F → R for i ∈ N such that

Di(f) = ℓ(f(Xi), Yi) −
∫

ℓ(f(x), y)P (dx, dy),

and D̄n : F → R such that

D̄n(f) = 1
n

n∑
i=1

Di(f), ∀f ∈ F .

Note that D1(f), D2(f), ... are i.i.d. random variables. Then Eq. (6.1) can be written as:

sup
f∈F

D̄n(f).

We call {D̄n(f)}∞
n=1 an empirical process. Empirical process theory is a subarea of probability theory that

studies the question of convergence of the process to 0 in different ways, e.g., convergence in probability or
almost sure convergence. If D̄n(f) → 0 in probability, it is called the Weak Law of Large Number and when
supf∈F D̄n(f) → 0 happens, we say that uniform convergence happens.

6.3 Lower Bracketing Number

Now we further reduce the clutter by introducing new notations. Let Z = X × Y

G = {(x, y) → ℓ(f(x), y) : f ∈ F} ⊆ RX ×Y = RZ .

Let Z1, Z2, ...Zn ∼ P ∈ M1(Z) and let Pn(dz) = 1
n

∑n
i=1 δZi

(dz) be the empirical distribution where
δZi({z}) = 1 if z = Zi and 0 otherwise. Note that δZi is a random measure. For P ∈ M1(Z), let Pg :=

∫
gdP

for g ∈ G. Then Eq. (6.1) can be written as:
sup
g∈G

|Png − Pg|

Definition 6.5. Let G ⊆ RZ and fix P ∈ M1(Z). For a fixed ε, g1, ...gm ∈ RZ is called a lower bracketing cover
of G@P @ε if for all g ∈ G, there exists j ∈ [m] such that:

1. gj ≤ g,

2. Pg ≤ Pgj + ε.

Note that g1, ..., gm is not necessarily in G.

Theorem 6.6. Let G ⊂ [0, 1]Z , P ∈ M1(Z) and Z1, ..., Zn ∼ P for n ∈ N. For all ε > 0, δ ∈ (0, 1) and g ∈ G,
it follows that w.p. 1 − δ,

Pg − Png ≤ inf
ε>0

[
ε +

√
log(Nε/δ)

2n

]
,

where for all ε > 0,

Nε = min{n ∈ N : there exists g1, ..., gn such that (g1, ..., gn) is a lower bracketing cover of G@P @ε}

https://en.wikipedia.org/wiki/Convergence_of_random_variables#Convergence_in_probability
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Proof. Fix an ε > 0. Let m = Nε and g1, ..., gm be a lower bracketing cover of G@P @ε. Using additive Chernoff
bound, we have that w.p. at least 1 − δ, it follows that

Pgj ≤ Pngj +
√

log(Nε/δ)
2n

. (6.2)

Pick g ∈ G and by definition of lower bracketing cover, there exists j ∈ [m] such that

Pg ≤ Pgj + ε ≤ Pngj + ε +
√

log(Nε/δ)
2n

(Definition 6.5(1) and Eq. (6.2))

≤ Png + ε +
√

log(Nε/δ)
2n

. (Definition 6.5(2))

Since ε was arbitrary, we then take the infimum over ε:

Pg ≤ Png + inf
ε>0

[
ε +

√
log(Nε/δ)

2n

]
.

Corollary 6.7. Let ĝn = arg ming∈G Png be the empirical risk minimizer, then it follows that w.p. at least 1 − δ:

P ĝn ≤ inf
g∈G

Pg + 2 inf
ε

[
ε +

√
log((Nε + 1)/δ)

2n

]

Proof. Fix an ε > 0, by definition of infimum, there exists a gε such that

Pgε ≤ inf
g∈G

Pg + ε (6.3)

Denote the lower bracketing cover of G@P @ε =: CLB(G, P, ε). Let U(δ, gε, CLB(G, P, ε)) be:

U(δ, gε, CLB(G, P, ε)) :=
{

∀g ∈ CLB(G, P, ε) : Pg ≤ Png +
√

log((Nε + 1)/δ)
2n

}
∪

{
Pngε ≤ Pgε +

√
log((Nε + 1)/δ)

2n

}
.

Then U(δ, gε, CLB(G, P, ε)) holds w.p. 1 − δ. On U(δ, gε, CLB(G, P, ε)), we have that there exists a j ∈ [m] such
that:

P ĝn ≤ Pgj + ε (Defn. of lower bracketing cover)

≤ Pngj + ε +
√

log((Nε + 1)/δ)
2n

(Chernoff’s bound)

≤ Pnĝn + ε +
√

log((Nε + 1)/δ)
2n

(Defn. of lower bracketing cover)

≤ Pngε + ε +
√

log((Nε + 1)/δ)
2n

(Defn. of ĝn)

≤ Pgε + ε + 2
√

log((Nε + 1)/δ)
2n

(Chernoff’s bound)

≤ inf
g∈G

Pgε + 2ε + 2
√

log((Nε + 1)/δ)
2n

(Eq. (6.3))
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Since ε was arbitrary, we then take the infimum over ε:

P ĝn ≤ inf
g∈G

Pg + 2 inf
ε

[
ε +

√
log((Nε + 1)/δ)

2n

]

Similarly, using the multiplicative Chernoff bound, we can get the following corollary:

Corollary 6.8. Let ĝn = arg ming∈G Png be the empirical risk minimizer, then it follows that w.p. at least 1 − δ:

P ĝn ≤ inf
g∈G,ε>0

[
Pg + 2ε +

√
2Pg log((Nε + 1)/δ)

2n
+

√
P ĝn log((Nε + 1)/δ)

2n
+ log((Nε + 1)/δ)

3n

]
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