CMPUT 654 Fa 23: Theoretical Foundations of Machine Learning Fall 2023

Lecture 5: ERMs and Learning the AND Class (Sept 19)

Lecturer: Csaba Szepesvdri Scribes: Zixin Zhong

Note: BIEX template courtesy of UC Berkeley EECS dept. (link to directory)
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may
be distributed outside this class only with the permission of the Instructor.

5.1 Review

5.1.1 Recall: Concentration inequalities

Theorem 5.1 (Additive Chernoff’s Inequality). Ler Xi,...,X,, € [0,1] be i.i.d. random variables, X, =
%(Xl + ...+ X,), p =EX,. We have

(a) Vo € (0, 1), with probability 1 — 6,

X, <p+ \/7105;;11/6);
. log(1/6

Theorem 5.2 (Multiplicative Chernoff’s Inequality). Let X1,...,X, € [0,1] be ii.d. random variables,
X, = %(Xl + ...+ X,), u = EXy. We have

PP L I
(b) V5 € (0, 1), with probability 1 — 5,
X >p— \/7 2uloa(1/0) (*)
n
5.1.2 Recall: PAC-learning

Let function f, : {0,1}¢ — {0,1}, X1, Xo,...,X,, € {0,1}¢ := 27 be i.i.d. random variables drawn from
distribution Py, data set D,, = {(X1, f«(X1)), ..., (Xn, f«(Xn))}

Let f, € F C 22d and f € 22d. In other words, ¥ =24, Y =2, f, € Y, f: X = ).

Let P{ := P(X,, f.X)), and

(b) V6 € (0, 1), with probability 1 — 6,

(a) Y6 € (0, 1), with probability 1 — 6,

L(f) =P (f(X) # f.(X)) = L(P§, f),
1:2x2—=2, ly,y)=1y#Y),

L(Pf, f) = / P(dz, dy) I(f(z),y).
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Definition 5.3 (PAC-Learning). Fix C = (C4)a>1, Where Cq C ng. C is PAC-learnable (Probably Approximately
Correctly) if 3 polynomial p € Rz, y, z] (computed with polynomial cost) and A = (A, 4)n>1,4>1 Where
Ana: (29x2)" — 2%
st. Vee (0,1),6€(0,1), d>1, P e My(2%), f. € Cq,
n>[p(1l/e, 1/6 ,d)],
— O~~~

accuracy confidence

XlaX27"'7XnNPX7

Fo=Apa | (X0, £(XD) o (X £(X0) | e Dy B £,
D,

we have

P (L (P;},fn) > s) <.
In other words, with probability 1 — §, P (f,,(X) # f«(x)|Dy) <e.
Remark 5.4 (Example).

Canp,d = {f:Zd — 2| 3uc[d], Ve e2?: f(z) :mian}7

JEU

C= (CAND,d)dZ]_ .

5.2 ERM: Empirical Risk Minimization

Let

fn :=arg min L, (f).
f€Ca

Homework: Show f,, arg minscc, Ln(f) is computationally efficient.
Moreover,

fn = arg min L, (f) — proper learning.
f€Canp

Method I: Fix d > 1, P and f.. Let D,, — f,,. We first decompose L( f,,) as follows:

L(fn) = L(fn) - Ln(fn) + Ln(fn)

= L(fn)_Ln(fn> +Ln(fn>_Ln(f*)+ Ln(f*)_L(f*) +L(f*),o'
—_— —_———— ———— —_—=
bounded with concentration inequality ERM bounded with concentration inequality

Next, Hoeffding inequality implies that with probability 1 — 6,

Ln(f*)_L(f*) < W-

Besides, f,, € C4 indicates that

L(fn) = Lyp(fn) <max L(f) — Ln(fn).

feCa
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Fix f € Cy. Set

u<f,a>_{L<f>_Ln<f)§ lgél/é)}

Then
PU(f.0))=21-6 <= PU(fd))<d
Let N = |Canp,q| and define ‘nice event’

U= u(m‘é).

feCa

Then

P(UC>IP’(U u(fzf[)) < ZJP’(UC<J‘,;\$[)> < Z%:&

f€Cq f€Ca feCa
When U holds, L(f) — L, (f) < 4/ bgg% for all f € Cg4, in other words,

[log(IV/9)
?éaé);L(f)_Ln(f)S “on

Theorem 5.5 (Proper learning). Canp,q PAC-learnable, f,, minimizing the empirical risk, and proper learning: with
propability 1 — 6,

2n n

L) < \/log(N +1/6) N \/log(N +1/8)

Remark 5.6.  (a) This bound on L( f,,) may not be tight.

5 /log(N +1/9) <e
2n

- n > 1
2log(N +1/6) — &2

2 N+1
®n2210g<+>.
€

(b) This result shows PAC-learnability:

]

Hence, p(1/¢,1/5,d) = 21log ((|Canp.a| + 1)/3) /2. Since |Canp.a| = 2¢, we have

<...

11 2log (27 + 1) + 2log(1/6)
p 7777d =
e d g2

Method I1: L(f) — L, (f) <?
Fix 0 < 0 < 1. By multiplicative Chernoff inequality, with probability 1 — IN/(N + 1),

vf;

L(f) — La(f) < \/QL(f) 1()gT(LJ\f +1/6)
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with probability 1 — § /(N + 1),

2L(f.)log(N +1/6) N log((N +1)/4)
n 3n '

Lol - 1) <4

Denote ‘nice event’

\/2L(f) gV +1/9) vr 1 (£) = L(f.) < \/

Ui {L(f) ~Lalf) < 2L log WV £ 1/0) , log((N+ 1)/9) }

Then P(U) > 1 —45. OnU N {L(f,) # 0}: since L, (f) > 0 and

max

2L(fn)log(252) T feCy,L(£)#0  [2L(f)log( L)
n n

<1,

we have

n

L < \/2L<fn>1og(;1).

Furthermore, we have

~
—
S
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