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5.1 Review

5.1.1 Recall: Concentration inequalities

Theorem 5.1 (Additive Chernoff’s Inequality). Let X1, . . . , Xn ∈ [0, 1] be i.i.d. random variables, X̄n =
1
n (X1 + . . . + Xn), µ = EX1. We have

(a) ∀δ ∈ (0, 1), with probability 1 − δ,

X̄n ≤ µ +
√

log(1/δ)
2n

;

(b) ∀δ ∈ (0, 1), with probability 1 − δ,

X̄n ≥ µ −
√

log(1/δ)
2n

.

Theorem 5.2 (Multiplicative Chernoff’s Inequality). Let X1, . . . , Xn ∈ [0, 1] be i.i.d. random variables,
X̄n = 1

n (X1 + . . . + Xn), µ = EX1. We have

(a) ∀δ ∈ (0, 1), with probability 1 − δ,

X̄n ≤ µ +
√

2µ log(1/δ)
n

+ 1
3n

;

(b) ∀δ ∈ (0, 1), with probability 1 − δ,

X̄n ≥ µ −
√

2µ log(1/δ)
n

. (*)

5.1.2 Recall: PAC-learning

Let function f∗ : {0, 1}d → {0, 1}, X1, X2, . . . , Xn ∈ {0, 1}d := 2d be i.i.d. random variables drawn from
distribution PX , data set Dn = {(X1, f∗(X1)) , . . . , (Xn, f∗(Xn))}.

Let f∗ ∈ F ⊂ 22d

and f ∈ 22d

. In other words, X = 2d, Y = 2, f∗ ∈ YX , f : X → Y .
Let P f∗

X := P (X1, f∗X1), and

L(f) = P (f(X) ̸= f∗(X)) = L(P f∗
X , f),

l : 2 × 2 → 2, l(y, y′) = 1(y ̸= y′),

L(P f∗
X , f) =

∫
P (dx, dy) l(f(x), y).
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Definition 5.3 (PAC-Learning). Fix C = (Cd)d≥1, where Cd ⊂ 22d

. C is PAC-learnable (Probably Approximately
Correctly) if ∃ polynomial p ∈ R[x, y, z] (computed with polynomial cost) and A = (An,d)n≥1,d≥1 where
An,d :

(
2d × 2

)n → 22d

s.t. ∀ε ∈ (0, 1), δ ∈ (0, 1), d ≥ 1, P ∈ M1(2d), f∗ ∈ Cd,

n ≥ ⌈p( 1/ε︸︷︷︸
accuracy

, 1/δ︸︷︷︸
confidence

, d)⌉,

X1, X2, . . . , Xn ∼ PX ,

fn = An,d

(X1, f∗(X1)) , . . . , (Xn, f∗(Xn))︸ ︷︷ ︸
Dn

 i.e. Dn
A→ fn,

we have

P
(

L
(

P f∗
X , fn

)
≥ ε

)
≤ δ.

In other words, with probability 1 − δ, P (fn(X) ̸= f∗(x)|Dn) ≤ ε.

Remark 5.4 (Example).

CAND,d =
{

f : 2d → 2 | ∃u ⊂ [d], ∀x ∈ 2d : f(x) = min
j∈u

Xj

}
,

C = (CAND,d)d≥1 .

5.2 ERM: Empirical Risk Minimization

Let

Ln(f) = 1
n

n∑
i=1

1 (f(Xi) ̸= Yi) ,

fn := arg min
f∈Cd

Ln(f).

Homework: Show fn arg minf∈Cd
Ln(f) is computationally efficient.

Moreover,

fn := arg min
f∈CAND

Ln(f) −→ proper learning.

Method I: Fix d ≥ 1, P and f∗. Let Dn → fn. We first decompose L(fn) as follows:

L(fn) = L(fn) − Ln(fn) + Ln(fn)
= L(fn) − Ln(fn)︸ ︷︷ ︸

bounded with concentration inequality

+ Ln(fn) − Ln(f∗)︸ ︷︷ ︸
ERM

+ Ln(f∗) − L(f∗)︸ ︷︷ ︸
bounded with concentration inequality

+L(f∗)
=0

.

Next, Hoeffding inequality implies that with probability 1 − δ,

Ln(f∗) − L(f∗) ≤
√

log(1/δ)
2n

.

Besides, fn ∈ Cd indicates that

L(fn) − Ln(fn) ≤ max
f∈Cd

L(f) − Ln(fn).
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Fix f ∈ Cd. Set

U(f, δ) =
{

L(f) − Ln(f) ≤
√

log(1/δ)
2n

}
.

Then

P (U(f, δ)) ≥ 1 − δ ⇐⇒ P (U c(f, δ)) ≤ δ.

Let N = |CAND,d| and define ‘nice event’

U =
⋂

f∈Cd

U
(

f,
δ

N

)
.

Then

P(U c) = P

 ⋃
f∈Cd

U c
(

f,
δ

N

) ≤
∑

f∈Cd

P
(

U c
(

f,
δ

N

))
≤

∑
f∈Cd

δ

N
= δ.

When U holds, L(f) − Ln(f) ≤
√

log(N/δ)
2n for all f ∈ Cd, in other words,

max
f∈Cd

L(f) − Ln(f) ≤
√

log(N/δ)
2n

.

Theorem 5.5 (Proper learning). CAND,d PAC-learnable, fn minimizing the empirical risk, and proper learning: with
propability 1 − δ,

L(fn) ≤
√

log(N + 1/δ)
2n

+
√

log(N + 1/δ)
n

.

Remark 5.6. (a) This bound on L(fn) may not be tight.

(b) This result shows PAC-learnability:

2
√

log(N + 1/δ)
2n

≤ ε

⇔ n

2 log(N + 1/δ) ≥ 1
ε2

⇔ n ≥ 2
ε2 log

(
N + 1

δ

)
.

Hence, p(1/ε, 1/δ, d) = 2 log ((|CAND,d| + 1)/δ) /ε2. Since |CAND,d| = 2d, we have

p

(
1
ε

,
1
δ

, d

)
=

2 log
(
2d + 1

)
+ 2 log(1/δ)

ε2 ≤ . . .

Method II: L(f) − Ln(f) ≤?
Fix 0 ≤ δ ≤ 1. By multiplicative Chernoff inequality, with probability 1 − δN/(N + 1),

L(f) − Ln(f) ≤
√

2L(f) log(N + 1/δ)
n

∀f ;
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with probability 1 − δ/(N + 1),

Ln(f∗) − L(f∗) ≤
√

2L(f∗) log(N + 1/δ)
n

+ log((N + 1)/δ)
3n

.

Denote ‘nice event’

U :=
{

L(f) − Ln(f) ≤
√

2L(f) log(N + 1/δ)
n

∀f, Ln(f∗) − L(f∗) ≤
√

2L(f∗) log(N + 1/δ)
n

+ log((N + 1)/δ)
3n

}
.

Then P(U) ≥ 1 − δ. On U ∩ {L(fn) ̸= 0}: since Ln(fn) ≥ 0 and

L(fn) − Ln(fn)√
2L(fn) log( N+1

δ )
n

≤ max
f∈Cd,L(f )̸=0

L(f) − Ln(f)√
2L(f) log( N+1

δ )
n

≤ 1,

we have

L(fn) ≤

√
2L(fn) log

(
N+1

δ

)
n

.

Furthermore, we have

L2(fn) ≤
2L(fn) log

(
N+1

δ

)
n

,

L(fn) ≤
2 log

(
N+1

δ

)
n

≤ ε,

⇒ n ≥
2 log

(
|Cd|+1

δ

)
ε

,

⇒ p

(
1
ε

,
1
δ

, d

)
= . . .
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