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4.1 Outline

1. Concentration inequalities:
Chernoff’s inequality, multiplicative Chernoff’s inequality; Benett’s inequality, Bernstein inequality

2. PAC-learning:
PAC learnability based on ‘fitness’/union bounds

4.2 Concentration inequalities

Theorem 4.1 (Chernoff’s Inequality). Let X1, . . . , Xn ∈ [0, 1] be i.i.d. random variables, X̄n = 1
n (X1 + . . .+Xn),

µ = EX1. We have

(a) ∀δ ∈ (0, 1), with probability 1 − δ,

X̄n ≤ µ +
√

log(1/δ)
2n

;

(b) ∀δ ∈ (0, 1), with probability 1 − δ,

X̄n ≥ µ −
√

log(1/δ)
2n

.

Proof. Since X1 ∈ [a, b] implies that X1 is σ(X1)-SG with σ(X1) = b−a
n , X1 ∈ [0, 1] indicates that

σ(X̄n) = σ(X1)√
n

= 1
2
√

n
.

Applying this fact with Hoeffding inequality, the Chernoff’s inequality is proven.

Theorem 4.2 (Multiplicative Chernoff’s Inequality). Let X1, . . . , Xn ∈ [0, 1] be i.i.d. random variables,
X̄n = 1

n (X1 + . . . + Xn), µ = EX1. We have

(a) ∀δ ∈ (0, 1), with probability 1 − δ,

X̄n ≤ µ +
√

2µ log(1/δ)
n

+ 1
3n

;

(b) ∀δ ∈ (0, 1), with probability 1 − δ,

X̄n ≥ µ −
√

2µ log(1/δ)
n

. (*)
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Remark 4.3.

(a) How big can µ be?

By (*): µ ≤ X̄n +
√

2µ log(1/δ)
n .

(b) Let

f(a, c) = max{u : u ≤ a +
√

u · c}, where a = X̄n, c = 2 log(1/δ)
n

.

Then

µ + log(1/δ)
2n

≥
√

2µ log(1/δ)
n

and equality holds when µ = log(1/δ)
2n

,

⇒ inf
0<γ<1

γµ + log(1/δ)
2γn

=
√

2µ log(1/δ)
n

,

⇒µ −
√

2µ log(1/δ)
n

= sup
0<γ<1

(1 − γ)µ − log(1/δ)
2γn

.

Let γ = 1/2, then with (*) we have

X̄n ≥ µ

2 − log(1/δ)
n

.

Figure 4.1: Example: set γ = 1/2.

(c) When we apply γ that does not maximize the term (1 − γ)µ − log(1/δ)
2γn , we cannot claim that we get a better

‘convergence’ rate, because when n → ∞, (1 − γ)µ − log(1/δ)
2γn and X̄n converges to different values. In

detail, X̄n converges to µ regardless of the value of γ, and (1 − γ)µ − log(1/δ)
2γn converges to (1 − γ)µ ̸= µ

when 0 < γ < 1.
To say something about the convergence of X̄n, we need to have the coefficient of µ be 1.

Theorem 4.4 (Bernett’s Inequality). Let X1, . . . , Xn be i.i.d. random variables. Set X̄n = 1
n (X1 + . . . + Xn) and

µ = EX1. If X1 − µ ≤ b, with probability 1 − δ, we have

X̄n ≤ µ +
√

2 Var(X1) log(1/δ)
n

+ b

3n
.

4.3 PAC-learning (L. Valiant)

Let function f∗ : {0, 1}d → {0, 1}, X1, X2, . . . , Xn ∈ {0, 1}d := 2d be i.i.d. random variables drawn from
distribution PX , data set Dn = {(X1, f∗(X1)) , . . . , (Xn, f∗(Xn))}.
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Let f∗ ∈ F ⊂ 22d

and f ∈ 22d

, P f∗
X := P (X1, f∗X1), and

L(f) = P (f(X) ̸= f∗(X)) = L(P f∗
X , f),

l : 2 × 2 → 2, l(y, y′) = 1(y ̸= y′),

L(P f∗
X , f) =

∫
P (dx, dy) l(f(x), y).

Definition 4.5 (PAC-Learning). Fix C = (Cd)d≥1, where Cd ⊂ 22d

. C is PAC-learnable (Proabably
Approximately Correctly) if ∃ polynomial p ∈ R[x, y, z] and A = (An,d)n≥1,d≥1 where An,d :

(
2d × 2

)n → 22d

s.t. ∀ε ∈ (0, 1), δ ∈ (0, 1), d ≥ 1, P ∈ M1(2d), f∗ ∈ Cd,

n ≥ ⌈p(1/ε, 1/δ, d)⌉,

X1, X2, . . . , Xn ∼ PX ,

fn = An,d

(X1, f∗(X1)) , . . . , (Xn, f∗(Xn))︸ ︷︷ ︸
Dn

 ,

we have

P
(

L
(

P f∗
X , fn

)
≥ ε

)
≤ δ.

In other words, with probability 1 − δ, P (fn(X) ̸= f∗(x)|Dn) ≤ ε.

Remark 4.6. (a) Example:

Cd
AND =

{
f : 2d → 2 | ∃u ⊂ [d], ∀x ∈ 2d : f(x) = min

j∈u
Xj

}
.

(b) (i) L(f∗) = 0. (ii) When Yi = f∗(Xi), there is NO noise and this will make learning faster.
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