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As before, our goal is to answer the question of how to evaluate a given algorithm. Recall that X and Y represent
the space of the inputs and outputs from which we sample n data points (X1, Y1), . . . , (Xn, Yn) ∼ P iid. Given a
function f : X → Y and a loss function ℓ : Y × Y → [0,∞), we define the empirical loss for f to be

Ln(f) = 1
n

n∑
i=1

ℓ(f(Xi), Yi)

and its expected loss (the quantity we finally care about) to be

L(f) =
∫
ℓ(f(x), y)P (dx, dy).

Then our goal reduces to answering whether (and when) Ln(f) is a good estimate of L(f)? One desirable property
of Ln is that it is unbiased: E[Ln(f)] = L(f). Another desirable property to have could be

P(|Ln(f) − L(f)| ≥ ε) ≤ δ(n, ε), for all ε > 0,

where δ(n, ε) is a small quantity, say for instance, exp(−nε2/(2σ2)). To obtain such guarantees, we will use the
concentration of measure phenomenon.

3.1 Concentration of Measure

In this section, we discuss the concentration of measure phenomenon for subgaussian random variables. Before
doing that, let us recall the definition of the moment generating function (MGF) and list some of its properties.
Moment generating function: For a random variable X , its moment generating function is defined as

MX(λ) := E[exp(λX)],

for all λ ∈ D, where D := {λ ∈ R : the expectation E[exp(λX)] exists}.1 The following properties hold true for
a random variable drawn from any distribution:

(a) D is a convex subset of R,

(b) MX(0) = 1, which also implies that zero belongs to the set D,2

(c) (should we mention something like this theorem is valid: differentiating under the integral sign)
M ′

X(λ) = d
dλE[exp(λX)] = E[ d

dλ exp(λX)] = E[X exp(λX)], and

1Note that the expectation E[X] does not hold for all random variables X; for instance, the mean of heavy tailed distributions, such as the
Cauchy distribution, does not exist.

2??? Were there some additional conditions here?
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(d) M (k)
X (λ) = E[Xk exp(λX)], which directly implies that E[M (k)

X (λ)] = E[Xk] (hence the name “moment
generating” function).

The logarithm of MGF is known as the cumulant generating function defined as

ψX := logMX(λ),

and is convex. Let us come back to discussing subgaussian random variables now. First, recall the definition:

Definition 3.1. The random variable X is said to be σ-subgaussian, if

MX(λ) := E[exp(λX)] ≤ exp(λ2σ2/2), for all λ ∈ R

or equivalently

ψX(λ) := logMx(λ) ≤ λ2σ2/2, for all λ ∈ R.

If X is a σ-subgaussian distribution, it can be shown that E[X] = 0 and V[X] ≤ σ2. Further, for all ε > 0,

P(X ≥ ε) ≤ exp
(

− ε2

2σ2

)
and P(X ≤ −ε) ≤ exp

(
− ε2

2σ2

)
.

The above display is equivalent to the following: for all δ > 0,

P
(
X ≤ σ

√
2 log(1/δ)

)
≥ 1 − δ and P

(
X ≥ −σ

√
2 log(1/δ)

)
≥ 1 − δ.

The above equations are called “one-tailed” bounds, and can be combined (using union bound) to obtain the
following “two-tailed” bound:

w.p. 1 − δ : X ∈
[

− σ
√

2 log(2/δ),+σ
√

2 log(2/δ)
]
. (3.1)

Proposition 3.2. Let X be σ-subgaussian, X1 be σ1-subgaussian, and X2 be σ2-subgaussian random variables.
Also assume X1 ⊥ X2, i.e. they are independent of each other. Then

(a) for all c ∈ R, cX is (|c|σ)-subgaussian, and

(b) the random variable X1 +X2 is
(√

σ2
1 + σ2

2
)
-subgaussian.3

Proof. We will bound the MGFs of the random variables cX and X1 +X2 to obtain the desired results. For part
(a), note that

McX(λ) = E[exp(λ(cX))] = E[exp((λc)X)] ≤ exp((λc)2σ2/2) = exp(λ2(|c|σ)2/2),

where the inequality follows from the σ-subgaussianity of X . For part (b), note that

MX1+X2(λ) = E[exp(λ(X1 +X2))] = E[exp(λX1) · exp(λX2)]
= E[exp(λX1)] · E[exp(λX2)] (since X1 ⊥ X2)

≤ exp(λ2σ2
1/2) · exp(λσ2

2/2) = exp(λ2(σ2
1 + σ2

2)/2),

and the result follows.

Using the above result n times, we obtain the following corollary:

3How would this result change if X1 ̸⊥ X2 (for instance, say, X1 = X2)?
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Corollary 3.3. For n iid σ-subgaussian random variables X1, . . . , Xn, their mean X̄n := (
∑n

i=1 Xi)/n is
(σ/

√
n)-subgaussian.

Remark 3.4. We can use the above results to answer our question of evaluating an algorithm by assuming the loss
of a function to be subgaussian. For instance, consider the problem of comparing K different functions f1, . . . , fn

using n different data points {(Xi, Yi)}i∈[n]. Define X(j)
i := ℓ(fj(Xi), Yi) − L(fj), for j ∈ [K]. Assume X(j)

i s
to be σ-subgaussian random variables. Also, let X̄(j)

n := (
∑n

i=1 X
(j)
i )/n. Then, using the previous corollary and

Eq. 3.1, we get P
(
|X̄(j)

n | ≥ σ
√

2 log(2K/δ)/n
)

≤ δ/K. Combining this inequality for all the K functions (by
using union bound) then gives us:

P
(

max
j∈[K]

|Ln(fj) − L(fj)| ≥ σ

√
2 log(2/δ) + logK

n

)
≤ δ.

This inequality says that the empirical losses of all these functions are close to their true means. Note that the factor
K comes inside a logarithm, whereas n comes outside of it. From this result, we observe that the sample size n
doesn’t need to grow too fast as the number of functions being compared K grows.

Note that the subgaussianity assumption is not necessarily too restrictive in practice. For instance, a bounded
zero-mean random variable is subgaussian, and thus all the above results apply to bounded random variables as well.

Lemma 3.5 (Hoeffding’s). Let a, b ∈ R and b ≥ a. If X ∈ [a, b] and E[X] = 0, then X is
(

b−a
2

)
-subgaussian.

Proof. We will show this by bounding the cumulant generating function ψX of X . Fix λ ∈ R. Then by Taylor’s
theorem with remainder, there exists λ̃ ∈ [0, λ], such that

ψX(λ) = ψX(0) + ψ′
X(0) · λ+ ψ′′

X(λ̃) · λ
2

2 .

Note that ψX(0) = logMX(0) = 0. Also note that ψ′
X(λ) = d

dλMX(λ) = M ′
X (λ)

MX (λ) , which along with the zero
mean assumption on X implies that ψ′

X(0) = M ′
X(0) = E[X] = 0. Therefore, the previous display reduces to

ψX(ψ) = ψ′′
X(λ̃) · λ

2

2 , for some λ̃ ∈ [0, λ]. (3.2)

All we need to do now is to bound ψ′′
X(λ̃). To do this, let X ∼ P , and define a distribution Q as follows:

Q(dx) := exp(λ̃x) · P (dx)∫
exp(λ̃x)P (dx)

= exp(λ̃x)
exp(ψX(λ̃))

P (dx) = exp
(
λ̃x− ψX(λ̃)

)
· P (dx).

Let the random variable Z ∼ Q. Note that this means that Z would be bounded between [a, b] a.s. (since∫ b

a
Q(dx) = 1). Since, Z is bounded, its variance bounded by: VQ[Z] ≤

(
b−a

2
)2

; indeed,

VQ[Z] = EQ[(Z − EQ[Z])2] (why?)= arg min
c

EQ[(Z − c)2] ≤ EQ[(Z − (a+ b)/2)2] ≤
(
b− a

2

)2

(also see this). Finally, note that

ψ′′
X(λ̃) = d

dλ̃
ψ′

X(λ̃) = d

dλ̃

M ′
X(λ̃)

MX(λ̃)
= M ′′

X(λ̃)MX(λ̃) −M ′
X(λ̃)2

MX(λ̃)2
= M ′′

X(λ̃)
MX(λ̃)

−
(
M ′

X(λ̃)
MX(λ̃)

)2

= EP [X2 exp(λ̃X)]
MX(λ̃)

−
(
EP [X exp(λ̃X)]

MX(λ̃)

)2
= EQ[Z2] − EQ[Z]2 = VQ[Z].

(Why is MX(λ̃) ̸= 0? And we needed to differentiate under the integral sign twice, so need to verify some
properties.) The above equation along with Eq. 3.2 implies that

ψX(ψ) = ψ′′
X(λ̃)λ

2

2 = VQ[Z]λ
2

2 ≤
(
b− a

2

)2
λ2

2 ,

which means that X is
(

b−a
2

)
-subgaussian.

https://en.wikipedia.org/wiki/Popoviciu%27s_inequality_on_variances
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