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In the previous lecture, we discussed a statistical framework for studying supervised learning. In this lecture,
we focus on the question of how to evaluate an algorithm using finite data, i.e. “given an algorithm, can you say
whether it will result in a small loss?” To study this question, we will use concentration of measure.

Let us start by a brief review of our notation. We denote the space of the input by X and the space of the outputs
(or labels) as Y . Let P ∈ M1(X × Y) be the data generating distribution, and (X ′

1, Y ′
1), . . . , (X ′

m, Y ′
m) iid∼ P be

the test data. We denote the loss function by ℓ : Y × Y → [0, ∞). For any function f : X → Y , we define its
empirical loss as Lm(f) =

( ∑m
i=1 ℓ(f(X ′

i), Y ′
i )

)
/m, and its expected loss as L(f) =

∫
ℓ(f(x), y)P (dx, dy). Our

goal is to find a function that minimizes L(f), however, all we can compute is Lm(f). Then our question becomes
“why and when do we think that Lm(f) is a good measure of the expected performance L(f)?”

2.1 Measure concentration

Let X1, . . . , Xn ∼ P ∈ M1(R) be iid random variables whose mean µ =
∫

xP (dx) and variance σ2 =∫
(x − µ)2P (dx) exist. Let µ̂ = 1

n

∑n
i=1 Xi be the sample mean. When is it a good idea to use sample mean as an

estimate of the true mean? We know that this sample mean is an unbiased estimator of the true mean, i.e. E[µ̂] = µ,
and has the variance E[(µ̂ − µ)2] = σ2/n. Can we say more?

Figure 2.1: Distribution of µ̂ with mean µ and variance σ2/n. The shaded regions denote the upper and lower tails of the
distribution for some ε > 0.

One way is to bound the probability by which µ̂ differs from the true mean µ. For instance, maybe we want the
probabilities of both the tail events to be tiny, so that the probability of µ̂ not deviating too much from µ is large:

P(µ ∈ [µ̂ − ε, µ̂ + ε]) ≥ 1 − (tiny number) ≥ (big number),

for some small ε > 0.

Central limit theorem (CLT)

One way to go about bounding the deviation between µ̂ and µ is via the central limit theorem. Let X1, . . . , Xn be a
sequence of iid random variables with zero mean, i.e. µ = E[Xi] = 0. Let Sn :=

∑n
i=1 Xi denote the sum of these
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variables. Let

Zn = Sn

σ
√

n
= Sn

n

√
n

σ
= µ̂

√
n

σ
,

denote the normalized sum of the random variables. Then as n → ∞, the central limit theorem says that PZn → PZ ,
where Z ∼ N (0, 1). (What assumptions does CLT need on the distribution of Xis?) Recall that for the standard
normal distribution, PZ(dZ) = 1√

2π
e−z2/2dz. Then,

P(µ̂ ≥ µ + ε) = P(µ̂
√

n/σ ≥ µ + ε
√

n/σ) n→∞
≈ P(Z ≥ µ + ε

√
n/σ).

For the standard normal distribution, not that for any u > 0,

P(Z ≥ u) = 1√
2π

∫ ∞

u

e−z2/2dz = 1√
2πu2

∫ ∞

u

u · e−z2/2dz

≤ 1√
2πu2

∫ ∞

u

z · e−z2/2dz (since the integral is over the set {z > u})

= 1√
2πu2

[
− e−z2/2]∞

u
= 1√

2πu2
e−u2/2.

Combining the above two results, with u = ε
√

n/σ, gives

P(µ̂ ≥ µ + ε) ≲ σ√
2πε2n

exp
(

−ε2n

2σ2

)
.

Note that this whole argument is not very rigorous, because in order to apply CLT, we need n → ∞, and the above
result has a finite n. However, the difference between the cumulative density function of Zn and Z is not too much.
(From Berry-Esséen theorem, this difference is O(E|X1|3/

√
n).)

Subgaussianity

We present some useful inequalities for bounding the deviation of a random variables and then discuss how a
property called subgaussianity can give very fast decays on tail events. The first is Markov’s inequality. For any
random variable X and ε > 0,

P(|X| ≥ ε) ≤ E|X|/ε.

(If the first moment doesn’t exist, then this inequality becomes vacuous.) If the second moment exists, then one can
derive, using Markov’s inequality, the following (known as Chebyshev’s inequality):

P(|X − µ| ≥ ε) ≤ V[X]/ε2.

In general, if the pth moment exists, one can obtain P(|X − µ|p > ε) ≥ E[|X − µ|p]/εp. (It is further possible to
optimize for the value of p ∈ N to get the strongest possible inequality, subject to the existence of the pth moment.)
But we can do something much simpler. Using Markov’s inequality we can obtain the following. For a random
variable X with µ = E[X] and ε > 0,

P(X ≥ µ + ε) = P(λ(X − µ) ≥ λε) = P(eλ(X−µ) ≥ eλε) ≤ E[eλ(X−µ)]/eλε, for all λ > 0.

Thus, if we can bound the term E[eλ(X−µ)], then we can get an exponential decay (which is much faster than what
we could obtain by optimizing p in the previous inequalities) on the upper tail event.

Definition 2.1 (Subgaussianity). A random variable X is called σ-subgaussian, if E[eλ(X−µ)] ≤ eλ2σ2/2.

Then by the subgaussianity assumption, we get

P(X ≥ µ + ε) ≤ eλ2σ2/2−λε = e−ε2/(2σ2).

(Random remark: If the loss ℓ is bounded, then the random variables L(fn) is also bounded, which means that
L(fn) would be a subgaussian random variable; refer the next lecture.)
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