
CMPUT 654: Theoretical Foundations of Machine Learning, Fall
2023

Homework #2

Instructions

Submissions You need to submit a single PDF file, named p02 <name>.pdf where <name> is your name.
The PDF file should include your typed up solutions (we strongly encourage to use pdfLATEX). Write your
name in the title of your PDF file. We provide a LATEXtemplate that you are encouraged to use. To submit
your PDF file you should send the PDF file via private message to Csaba on Slack before the deadline.

Collaboration and sources Work on your own. You can consult the problems with your classmates,
use books or web, papers, etc. Also, the write-up must be your own and you must acknowledge all the
sources (names of people you worked with, books, webpages etc., including class notes.) Failure to do so
will be considered cheating. Identical or similar write-ups will be considered cheating as well. Students are
expected to understand and explain all the steps of their proofs.

Scheduling Start early: It takes time to solve the problems, as well as to write down the solutions. Most
problems should have a short solution (and you can refer to results we have learned about to shorten your
solution). Don’t repeat calculations that we did in the class unnecessarily.

Other Some problems get zero points. These are practice problems that will not be marked.

Deadline: October 8 at 11:55 pm

Problems

As usual, we assume all functions are measurable as needed. The topic of the first group of questions is basic
measure concentration.

Question 1.

(a) Calculate the moment-generating function of Gaussian random variable. Show your work.

2 points

(b) Prove Tong’s version of Markov’s inequality. That is, for any random variable X, any function h : R →
[0,∞) and any t > 0, P(h(X) ≥ t) ≤ E[h(X)]/t.

2 points

(c) Let X be a random variable on R with density with respect to the Lebesgue measure of p(x) =
|x| exp(−x2/2)/2. Show that P(|X| ≥ ε) = exp(−ε2/2).

2 points

(d) Let X as in the previous part. Show that X is not
√
(2− ε)-subgaussian for any ε > 0.

2 points

(e) Let Xi be σi-subgaussian for i ∈ {1, 2} with σi ≥ 0. Prove that X1 +X2 is (σ1 + σ2)-subgaussian. Do
not assume independence of X1 and X2.

2 points

1



Total: 10 points

The next questions explores the union bound.

Question 2.
Fix 0 ≤ δ ≤ 1. Show that there exist a finite set W and collection of random variables (X(w))w∈W such

that, for any w ∈ W , with probability at least 1− δ, X(w) ≥ 0 yet it is not true that with probability 1− δ,
minw∈W X(w) ≥ 0.

Total: 2 points

The next questions explores PAC learning.

Question 3.

(a) Show that the ERM for the AND class can be efficiently computed.

5 points

(b) Show that the ERM for “Decision Lists” (Example 3.2 in the book) can be efficiently computed.

10 points

(c) Show that the “Decision Lists” class is PAC learnable.

5 points

Total: 20 points

The next questions explore multiplicative Chernoff inequality (and compares it to the additive one).
In this question X1, . . . , Xn are i.i.d. random variables, X1 ∈ [0, 1], µ = E[X1] and X̄n = (X1 + · · · +

Xn)/n. We also fix 0 < δ < 1 and let L = log(1/δ)/n. We use the standard notation (x)+ = max(x, 0)
(x ∈ R). In words, (x)+ is called the “positive part” of x.

Question 4.

(a) Show that for any b, c ≥ 0 and u ∈ R, u ≤ c+ b
√
u implies u ≤ c+ b

√
c+ b2.

2 points

(b) Show that for any b, c ≥ 0 and u ∈ R, u ≥ c− b
√
u implies u ≥ c− b

√
c.

2 points

(c) Show that with probability at least 1− δ, µ ≤ X̄n +
√

2LX̄n + 2L.

2 points
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(d) Show that with probability at least 1− δ, µ ≥ (X̄n − L/3)+ −
√
2L (X̄n − L/3)+.

2 points

(e) Assume µ > 0. Show that Hoeffding’s inequality (or “additive Chernoff”) implies that if 2n ≥ log(1/δ)/(µε)2

then with probability at least 1− δ, µ−X̄n

µ ≤ ε.

2 points

(f) Assume µ > 0. Show that the multiplicative Chernoff inequality implies that if n ≥ 2 log(1/δ)/(µε2)

then with probability at least 1− δ, µ−X̄n

µ ≤ ε.

2 points

Remark Consider now the results of Parts (e) and (f). From these, we see that Hoeffding’s inequality implies
that to achieve X̄n ≥ µ/2 hold with high probability, it is sufficient to take O(1/µ2) samples. In contrast,
the multiplicative Chernoff inequality implies that O(1/µ) samples are sufficient. Yet another reason to call
the multiplicative Chernoff inequality multiplicative is because it gives better results for such multiplicative
(or relative) error bounds.

Total: 12 points

For a measurable set X , U ⊂ R measurable, let M(X , U) be the set of measurable functions from X to U .
Let Z be a set and let P be a distribution over Z (hence, Z is assumed to be equipped with an appropriate
measurability structure). For c0, c1 > 0, we define

VarZ(c0, c1, P ) = {g ∈ M(Z,R) : VarP (g) ≤ c20 + c1Pg},

where recall that Pg =
∫
gdP and VarP (g) =

∫
(g − Pg)2dP (which, by a slight abuse of notation, we may

also write as P (g − Pg)2).

Question 5. Solve the following problems.

(a) Show that M(Z, [0, 1]) ⊂ VarZ(0, 1, P ).

2 points

(b) For some set X , let F ⊂ M(X ,R) and assume that F is convex (i.e., for any α ∈ [0, 1], f, g ∈ F ,
αf + (1− α)g ∈ F also holds). Let Z = X × R and

G = {ℓf : ℓf : Z → R, ℓf (x, y) = (f(x)− y)2, f ∈ F} .

By abusing notation, we also write for this set G = ℓsq ◦F . Let P ∈ M1(Z) be such that for some M > 0
constant, for any g ∈ G, g(Z) ≤ M2 with probability one, where Z ∼ P . Define g∗ = argming∈G Pg
(which is assumed to exist) and

G̃ = {g − g∗ : g ∈ G} (= G − {g∗}) .

Then, for some universal constant c > 0,

G̃ ⊂ VarZ(0, cM
2, P ).

10 points
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(c) Fix M > 0. Let F ⊂ M(X , [0,M ]), Z = X × [0,M ], P ∈ M1(Z). Let G = ℓsq ◦F , f∗(x) = E[Y |X = x],

x ∈ X and G̃ = G − {ℓf∗}. Then, for some universal constant c > 0, G̃ ⊂ VarZ(0, cM
2, P ).

10 points

Total: 22 points

Total for all questions: 66. Of this, 16 are bonus marks. Your assignment will be marked out of 50.
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